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Abstract 

Agricultural production faces challenges from disease, pests, and environmental stresses, necessitating 

enhanced crop cultivars. Traditional transformation techniques are limited, leading to few cultivars for 

genetic manipulation. To overcome this, we explore viral delivery of CRISPR/Cas9 for precise plant 

genome modifications. This method utilizes optimized viruses to deliver CRISPR/Cas9 constructs, 

enabling targeted changes. By spanning the virus host range, traditional transformation challenges are 

circumvented. We review virus types used for delivery, recent outcomes, and future potential. 

Successful cases in various crops show improved disease resistance, insect tolerance, and stress 

resilience. The technology can target multiple traits simultaneously, streamlining crop improvement. 

Challenges like off-target effects and regulations need addressing for broader adoption. Viral delivery 

of CRISPR/Cas9 holds promise for accelerating crop breeding, enhancing resilience, and contributing 

to global food security and sustainable agriculture. 
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Introduction 

Agricultural productivity is increasingly threatened by biotic and abiotic stresses, including 

disease, pests, and environmental challenges such as drought and heat stress (Fahad et al., 

2017; Teshome et al., 2020) [38, 105]. These stressors can lead to substantial yield losses and 

pose significant challenges to global food security (Raza & Bebber, 2022; Rivero et al., 

2022) [91, 92]. To address these issues, there is a pressing need to develop crop cultivars with 

enhanced resistance or tolerance to these stress factors. Genetic engineering technologies, 

such as CRISPR/Cas-based genome editing, offer promising avenues for crop improvement 

by enabling precise modifications to the plant genome (Hsu et al., 2014) [51]; Sami et al., 

2021) [93]. Traditional genetic transformation methods have been valuable for developing 

genetically modified crops; however, they are not universally optimized for all plant species, 

limiting their application to specific cultivars (Altpeter et al., 2016) [9]; (Eckerstorfer et al., 

2019) [37]. Moreover, some preferred cultivars may not be amenable to genetic 

transformation, leading to a slow and laborious introgression process through backcrossing to 

transfer desired traits (H. Chen et al., 2014) [25]. These challenges hinder the rapid 

development of stress-tolerant crops, necessitating exploring alternative and efficient 

strategies. 

Genetic engineering technologies have significantly advanced over the years, enabling 

scientists to explore new avenues for crop improvement. One such approach is using 

CRISPR/Cas9-mediated viral delivery for genome editing in plants, which has shown great 

promise in enhancing crop resilience against biotic and abiotic stresses (Z. Ali, Abulfaraj, et 

al., 2015a; Wagh & Manoj Baliram Pohare, 2019; Wagh et al., 2021) [5, 102]. In recent years, 

the revolutionary CRISPR/Cas9 genome editing technology has opened new avenues for 

precise and efficient genetic modifications. To overcome the limitations of traditional 

methods, researchers have explored viral delivery to introduce CRISPR/Cas9 components 

into plant cells (Uddin et al., 2020) [108].  
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Utilizing viral vectors allows for targeted and specific 

genome editing in various crop species. The viral delivery of 

CRISPR/Cas9 offers a rapid and versatile crop improvement 

approach that has shown great promise in revolutionizing 

agriculture. The viral delivery of CRISPR/Cas9 components 

to model plant species like N. benthamiana has proven to be 

a valuable tool for system characterization and generation of 

inoculum for other less amenable plants (Fig. 1A) (Gentzel 

et al., 2022) [43]. 

The versatility of viral CRISPR/Cas9 delivery to plants 

allows for targeted studies, facilitating the manipulation of 

plant and pest genes to increase resistance to biotic and 

abiotic stresses (Fig. 1B) (Borrelli et al., 2018) [20]. Various 

viruses have been explored as vectors for CRISPR/Cas9 

delivery in plants, including potato virus X (PVX) (Ariga et 

al., 2020) [11], tobacco rattle virus (TRV) (C. Zhang et al., 

2022), foxtail mosaic virus (FoMV) (Brewer et al., 2018) 
[21], and beet necrotic yellow vein virus (BNYVV) ((Jiang et 

al., 2019) [57]. In recent years, viral delivery of CRISPR/Cas-

based genome editing technology has emerged as a 

transformative approach to address these limitations 

(Montecillo et al., 2020) [78]. Viral vectors can efficiently 

deliver CRISPR/Cas9 constructs to plant cells, enabling 

targeted and precise modifications to the plant genome 

(Laforest & Nadakuduti, 2022) [66]. This novel method holds 

the potential to overcome the restrictions associated with 

traditional transformation and breeding techniques, as it 

allows the delivery of genome editing constructs across the 

entire host range of the virus used (C. Gao, 2021) [41] 

Consequently, viral delivery of CRISPR/Cas9 offers a 

broader and more versatile platform for crop improvement. 

The effectiveness of viral CRISPR/Cas9 delivery has been 

demonstrated in various crop species, showcasing improved 

disease resistance, insect tolerance, and abiotic stress 

tolerance. By harnessing the power of this technology, 

multiple traits can be simultaneously targeted, streamlining 

the crop improvement process and expediting the 

development of stress-resilient crops. This review paper 

provides an overview of the different types of viruses 

optimized for CRISPR/Cas9 delivery and examines their 

application in crop improvement. Furthermore, we highlight 

the phenotypic outcomes achieved in recent studies and 

discuss the future potential of viral CRISPR/Cas9 delivery 

in advancing agriculture. (Table no. 2) We also address the 

challenges and considerations of this technology, such as 

off-target effects and regulatory implications, to facilitate its 

responsible and effective deployment in crop breeding. 

Advancements in CRISPR technologies have further 

expanded the toolbox for plant genome editing and 

transcriptional regulation (Lowder et al., 2015) [75]; (Wada 

et al., 2022) [113]; (Nambiar et al., 2022) [80]. For example, 

the Cas13a protein has been incorporated, allowing for 

precise epigenome editing in plants (Dreissig et al., 2017) 
[36]. Additionally, the use of RNA viruses as delivery 

systems for CRISPR/Cas9 components has demonstrated 

great potential in achieving heritable gene editing in wheat, 

maize, and other crops (Uranga et al., 2023) [109]; (Beernink 

et al., 2022) [14]; (Begum et al., 2019) [15]. This viral delivery 

system for CRISPR/Cas9 has also been harnessed for 

targeted gene activation (K. Chen et al., 2019; Sasse et al., 

2019) [94] and targeted DNA demethylation (Ghoshal et al., 

2020) [44], further expanding its applications in plant 

research. Moreover, simultaneous gene expression and 

multi-gene silencing have been achieved in Zea mays using 

the maize dwarf mosaic virus (Xie et al., 2021) [120]. 

Overall, the combination of CRISPR/Cas9 with viral 

delivery holds immense potential for rapid and efficient crop 

improvement, offering a promising approach to enhance 

crop resilience against both biotic and abiotic stresses 

(Montecillo et al., 2020) [78]; (Ahmad et al., 2021) [3]. As 

more knowledge is gained and techniques are refined, this 

approach may play a crucial role in ensuring food security 

and sustainable agriculture in the face of various challenges 

(Naqvi et al., 2022) [81] (Shelake et al., 2019) [106]. 

Gene editing technologies such as CRISPR/Cas9 have 

emerged as powerful tools for crop improvement. In the 

context of sugarcane, researchers have explored the use of 

CRISPR/Cas9 for various applications, including disease 

resistance, stress tolerance, and yield improvement. Here, I 

will summarize some of the critical studies related to gene 

editing in sugarcane. This manuscript aims to 

comprehensively review the viral delivery of CRISPR/Cas9 

genome editing technology in crop improvement. We aim to 

explore the various types of viruses used for delivery, the 

mechanisms involved, and the phenotypic outcomes 

observed in recent studies. Additionally, we will discuss the 

implications of this technology for crop improvement, food 

security, and sustainable agriculture. Furthermore, the 

manuscript will highlight the future potential of viral 

CRISPR/Cas9 technology (Table no.2) and the challenges 

that need to be addressed to harness its full benefits in crop 

enhancement. Through this Review, we hope to emphasize 

the significance of viral CRISPR/Cas9 delivery as a 

transformative approach for addressing agricultural 

challenges and ensuring global food security. 

 

Viral Delivery of CRISPR/Cas9 Genome Editing 

By harnessing the natural capabilities of viruses, scientists 

can package and deliver the CRISPR/Cas9 machinery into 

target cells with remarkable precision (Xu et al., 2019) [132]. 

This process allows for efficient and targeted gene editing, 

offering immense potential in treating genetic diseases and 

developing resilient crops (Zaidi et al., 2016) [138]. The viral 

vectors act as delivery vehicles, transporting the 

CRISPR/Cas9 components to the desired cells, where the 

Cas9 enzyme can make precise cuts in the DNA, enabling 

gene insertion, deletion, or modification. Although viral 

delivery of CRISPR/Cas9 genome editing is a cutting-edge 

and promising approach that has revolutionized the field of 

genetic modification (Abdelnour et al., 2021) [1], the 

technology is still in its early stages. It faces immune 

response and off-target effects (Bhattacharjee et al., 2022) 
[18]. Ongoing research advances viral delivery systems for 

safer, more effective genome editing, promising 

transformative medical and agricultural applications. This 

Review explores virus types, mechanisms, and recent 

outcomes, highlighting efforts to improve safety and 

efficacy (Table no.1.). 

 

Mechanisms of viral delivery of genomic editing 

constructs 

The viral delivery of genomic editing constructs involves 

several vital mechanisms that enable the efficient transfer of 

CRISPR/Cas9 components or other gene editing tools into 
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target cells. These mechanisms are essential for successful 

gene editing and manipulation. Here are the main steps 

involved in viral delivery:  

 

Cellular Attachment: The first step in viral delivery is the 

attachment of the virus to the target cells. Viruses are 

equipped with specific surface proteins that can recognize 

and bind to receptors on the surface of the host cells. This 

binding is particular to certain cell types, allowing targeted 

delivery.  

 

Cellular Attachment: The initial step in viral delivery 

entails the attachment of the virus to target cells. Viruses 

have distinct surface proteins capable of recognizing and 

binding to receptors on host cell surfaces. This binding 

exhibits remarkable specificity towards particular cell types, 

enabling precision-oriented delivery (Maginnis, 2018) [76]. 

 

Cell Entry and Endocytosis: Following attachment to the 

cell surface, the virus gains entry into the target cell. Diverse 

viruses employ distinct entry mechanisms. Some viruses 

employ receptor-mediated endocytosis, wherein the cell 

envelops the virus by forming a vesicle around it (Dimitrov, 

2004) [33]. Viral Uncoating: After endocytosis, the viral coat 

is shed (uncoating), releasing the viral genetic material into 

the target cell's cytoplasm. In certain instances, the entire 

virus enters the cell, while in others, solely the viral genome 

is transported (Yamauchi & Greber, 2016) [134].  

 

Nuclear Entry: For viruses delivering gene-editing tools 

like CRISPR/Cas9, the viral genome or its components must 

infiltrate the cell nucleus, where the host DNA is localized. 

This constitutes a pivotal phase for gene editing, given that 

the target DNA is housed within the nucleus (Taha et al., 

2022) [114]. 

 

Transgene Expression: Post entry into the nucleus, the 

genetic material delivered by the virus is transcribed and 

translated by the host cellular machinery. In the context of 

CRISPR/Cas9, this results in the production of the Cas9 

protein and guide RNA, which subsequently combine to 

form the CRISPR/Cas9 complex accountable for gene 

editing (Horodecka & Düchler, 2021). Target DNA Binding 

and Editing: The CRISPR/Cas9 complex identifies the 

target DNA sequence via the guide RNA and binds to it. 

Cas9 functions like molecular scissors, generating a double-

strand break (DSB) at the target site. This DSB prompts the 

activation of the cellular repair machinery (Wu et al., 2014) 
[129]. DNA Repair and Editing Outcomes: Two primary 

DNA repair pathways—Non-Homologous End Joining 

(NHEJ) and Homology-Directed Repair (HDR)—become 

operational. NHEJ frequently leads to insertions or deletions 

(indels) at the DSB site, culminating in gene knockout. On 

the other hand, HDR, provided with a repair template, can 

introduce precise nucleotide modifications, thereby enabling 

meticulous gene editing (Ferreira da Silva et al., 2019) [39]. 

Expression Regulation (Optional): Several viral delivery 

systems encompass supplementary components, such as 

promoters or regulatory sequences, to govern the expression 

of delivered gene-editing tools. This augmentation aids in 

achieving control over the spatiotemporal aspects of gene 

editing Expression Regulation (Optional): Several viral 

delivery systems encompass supplementary components, 

such as promoters or regulatory sequences, to govern the 

expression of delivered gene-editing tools. This 

augmentation aids in achieving control over the 

spatiotemporal aspects of gene editing (Bulcha et al., 2021) 
[22]. 

 

Phenotypic Outcomes of Viral CRISPR/Cas9 Delivery in 

Recent Studies 

Treatment of Genetic Disorders: Viral delivery of 

CRISPR/Cas9 has shown promising results in correcting 

genetic mutations associated with various hereditary 

disorders. For example, in a study targeting Duchenne 

muscular dystrophy (DMD), researchers successfully 

restored the expression of the dystrophin gene in mouse 

models, leading to improved muscle function and reduced 

disease symptoms (M. Chen et al., 2021) [29]. 

 

Cancer Therapeutics: CRISPR/Cas9 delivered via viral 

vectors has been explored as a potential cancer treatment. 

Studies have demonstrated the successful knockout of 

oncogenes in cancer cells, inhibiting tumor growth and 

metastasis (Stefanoudakis et al., 2023) [113]. Additionally, 

CRISPR/Cas9 has been used to enhance the targeting of 

cancer cells, increasing the specificity and effectiveness of 

chemotherapy (Balon et al., 2022) [13]. Neurological 

Disorders: Viral CRISPR/Cas9 delivery has shown promise 

in addressing neurodegenerative diseases. For instance, 

researchers targeted the mutant huntingtin gene in a study 

on Huntington's disease. They observed a reduction in 

mutant protein aggregates, improving motor function in a 

mouse model (Alkanli et al., 2023) [8]. Viral Disease 

Research: CRISPR/Cas9 delivered by viruses has been 

instrumental in understanding viral pathogenesis and host-

virus interactions. Researchers have used this technology to 

disrupt viral genes and study their role in viral replication 

and virulence (Hirano et al., 2022) [49]. Drug Discovery: 

CRISPR/Cas9 delivered via viral vectors has been utilized 

to investigate the function of specific genes in various 

biological processes. These studies have identified potential 

drug targets and provided insights into the mechanisms of 

certain diseases. 

 

Case studies of successful viral delivery of CRISPR/Cas9 

in different crop species 

CRISPR/Cas9 has emerged as a revolutionary tool in crop 

biotechnology, offering precise genome editing capabilities 

to enhance agricultural productivity and address various 

challenges in crop cultivation. Several case studies have 

demonstrated successful viral delivery of CRISPR/Cas9 in 

different crop species, showcasing its potential to create 

beneficial genetic modifications. One notable case study 

(Arazoe, 2021) [10] targeted the susceptibility gene in the rice 

blast fungus using CRISPR/Cas9 delivered by a viral vector. 

By doing so, they achieved durable and heritable resistance 

against rice blast disease in rice plants, one of the most 

devastating fungal diseases affecting rice crops worldwide. 

In another research endeavor, (Agarwal et al., 2018) [2] 

utilized a viral delivery system to introduce CRISPR/Cas9 

into maize plants to modify the genes responsible for 

producing seed carotenoids. By enhancing the carotenoid 

content through precise genome editing, they developed 
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nutrient-rich maize with potential health benefits for human 

consumers. Additionally, (Tran et al., 2023) [117] 

demonstrated the successful application of viral delivery of 

CRISPR/Cas9 in improving drought resistance in tomatoes. 

By targeting specific genes involved in drought response, 

they could create transgenic tomato plants with enhanced 

drought tolerance. These case studies collectively 

demonstrate the versatility and efficacy of viral delivery for 

CRISPR/Cas9-mediated genome editing in different crop 

species. By harnessing the power of this technology, 

agricultural scientists can work towards developing climate-

resilient, nutritionally enriched, and disease-resistant crop 

varieties to ensure global food security and sustainable 

agriculture. However, it is essential to note that each crop 

species and its corresponding genome present unique 

challenges, and further research is ongoing to optimize the 

delivery and precision of CRISPR/Cas9 in diverse crops. 

 

Improved disease resistance and insect tolerance 

Improved disease resistance and insect tolerance are two 

crucial traits that can significantly enhance the productivity 

and sustainability of crops. Where understanding interaction 

of multiple pathogens with plant and its associated gene to 

further modified by genome editing (Dandve et al., 2019; 

Jayasinghe et al., 2023; Wagh, Daspute, et al., 2021) [31, 56, 

124]. Gene and through advancements in biotechnology, 

particularly the utilization of CRISPR/Cas9 genome editing 

delivered by viral vectors, substantial progress has been 

made in achieving these desirable traits. With CRISPR/Cas9 

technology, researchers can precisely target and modify 

specific genes associated with crop disease susceptibility. 

By introducing genetic changes, they have successfully 

developed plants with enhanced disease resistance. For 

example, in a case study on potatoes, it was demonstrated 

that viral delivery of CRISPR/Cas9 targeting essential 

susceptibility genes conferred resistance against late blight, 

a devastating disease caused by the pathogen Phytophthora 

infestans (Kieu et al., 2021) [60]. Similarly, viral delivery of 

CRISPR/Cas9 has also shown promise in imparting insect 

tolerance to crops. By targeting genes involved in plant-

insect interactions, scientists have been able to create plants 

that are less susceptible to insect pests. One study focused 

on the diamondback moth, a notorious pest of cruciferous 

crops. Through CRISPR/Cas9-mediated genome editing, 

researchers disrupted a gene critical for the moth's survival, 

increasing resistance in cabbage plants (Shin et al., 2022) 
[107]. 

The advantage of using viral delivery for CRISPR/Cas9 lies 

in its ability to introduce the genome-editing machinery into 

plant cells efficiently. Viruses are highly adept at 

transferring their genetic material into the host, and by 

modifying these viral vectors, CRISPR/Cas9 components 

can be delivered precisely to the target cells without causing 

harm to the plant. Moreover, viral delivery allows the 

potential to edit multiple genes simultaneously, creating 

crops with stacked traits, such as disease resistance and 

insect tolerance. 

 

Enhanced abiotic stress tolerance 

Enhanced abiotic stress tolerance is another essential area 

where viral delivery of CRISPR/Cas9 has shown great 

promise in improving crop resilience. Abiotic stresses, such 

as drought, salinity, extreme temperatures, and nutrient 

deficiencies, pose significant challenges to agricultural 

productivity worldwide (Pawar et al., 2020; Siddiki et al., 

2020) [87, 109]. By leveraging the precision and efficiency of 

CRISPR/Cas9 technology delivered through viral vectors, 

researchers have made significant strides in developing 

crops with increased tolerance to these adverse 

environmental conditions. One noteworthy study focused on 

enhancing drought tolerance in rice, a staple food crop for 

millions of people. Through viral delivery of CRISPR/Cas9, 

researchers targeted specific genes involved in the plant's 

response to water deficit. The resulting transgenic rice 

plants exhibited improved water-use efficiency and 

sustained growth even under limited water availability (Rai 

et al., 2023) [88]. Similarly, viral delivery of CRISPR/Cas9 

has been employed to improve salt tolerance in crops, as 

salinity is a significant constraint on agricultural land. By 

editing genes associated with salt sensitivity, scientists were 

able to produce salt-tolerant tomato plants capable of 

thriving in saline environments without compromising yield 

(Tran et al., 2021) [116]. Furthermore, researchers have 

explored viral CRISPR/Cas9 delivery to enhance nutrient 

uptake and utilization efficiency in crops, addressing 

nutrient deficiencies in soils. By targeting specific genes 

responsible for nutrient transport and metabolism, they have 

created plants with improved nutrient acquisition and 

utilization, leading to better growth and development even 

in nutrient-depleted soils (Yadav et al., 2021) [133]. The 

development of crops with enhanced abiotic stress tolerance 

is of paramount importance in the face of climate change, 

which is projected to increase the frequency and intensity of 

extreme environmental conditions. By equipping plants with 

the ability to withstand droughts, tolerate high salinity, and 

thrive in suboptimal nutrient conditions, agricultural 

systems can become more resilient and sustainable, ensuring 

food security for a growing global population. Despite 

numerous advancements and successes, challenges remain 

in scaling up the use of viral delivery of CRISPR/Cas9 in 

agriculture. Strict regulations, public acceptance, and 

intellectual property concerns are some of the aspects that 

need to be addressed to facilitate the deployment of these 

genetically enhanced crops in real-world farming scenarios. 

Continued research, collaboration between scientists and 

policymakers, and public engagement are vital to realizing 

the full potential of CRISPR/Cas9-mediated abiotic stress 

tolerance in crop improvement. 

 

Potential to target multiple traits simultaneously 

One of the most remarkable features of CRISPR/Cas9 

technology delivered through viral vectors is its potential to 

target multiple traits simultaneously. Traditional breeding 

methods often face limitations in introducing multiple 

desirable traits into a crop plant due to the complex genetic 

inheritance of these traits and the time-consuming nature of 

conventional breeding programs. However, with the advent 

of CRISPR/Cas9, it becomes feasible to edit multiple target 

sites in the plant genome simultaneously, offering an 

unprecedented opportunity to introduce and stack multiple 

beneficial traits in a single step. For instance, researchers 

have successfully utilized viral delivery of CRISPR/Cas9 to 

create maize plants with stacked traits of disease resistance, 

insect tolerance, and improved drought tolerance. By editing 

specific genes associated with each trait, they generated 
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transgenic maize varieties capable of withstanding insect 

attacks, resisting common diseases, and maintaining 

productivity under limited water availability (Hernandes-

Lopes et al., 2023) [48] Moreover, viral delivery of 

CRISPR/Cas9 has shown the potential to target multiple 

genes involved in different metabolic pathways. This 

capability has been exemplified in the development of 

biofortified crops with enhanced nutritional value. By 

simultaneously editing genes responsible for nutrient 

synthesis, accumulation, and regulation, researchers have 

produced crops with increased levels of essential vitamins, 

minerals, and other beneficial compounds.  

The ability to target multiple traits in a single CRISPR/Cas9 

editing event not only accelerates the breeding process but 

also enables the creation of tailored crops that address the 

specific needs of farmers, consumers, and the environment. 

For example, crops could be designed to have improved 

nutritional content, reduced susceptibility to pests and 

diseases, and enhanced adaptability to changing climatic 

conditions all in one improved variety. 

However, it is important to note that simultaneously 

targeting multiple traits through CRISPR/Cas9 comes with 

its own set of challenges. Off-target effects, where 

unintended edits occur in the genome, can be a concern, 

especially when multiple target sites are involved. 

Additionally, the regulatory approval process for such multi-

trait edited crops can be more complex. Therefore, 

researchers and regulatory bodies need to work closely 

together to ensure the safety and efficacy of these multi-trait 

genetically modified crops before they are introduced into 

commercial agriculture. In conclusion, the capability of viral 

delivery of CRISPR/Cas9 to target multiple traits 

simultaneously holds immense promise for crop 

improvement. By streamlining the breeding process and 

allowing the incorporation of multiple beneficial traits, this 

technology paves the way for the development of more 

resilient, nutritious, and sustainable crop varieties that can 

address the challenges of modern agriculture and contribute 

to global food security. 

 

Disease Resistance 

Researchers have targeted genes related to disease resistance 

in sugarcane using CRISPR/Cas9. For example, they have 

targeted genes involved in plant-pathogen interactions to 

enhance resistance against major sugarcane diseases like 

sugarcane smut, yellow leaf syndrome, and mosaic viruses. 

By editing specific genes associated with susceptibility, they 

aim to develop disease-resistant sugarcane varieties. 

 

Stress Tolerance 

Sugarcane is often subjected to various abiotic stresses, such 

as drought, salinity, and low-temperature stress. 

CRISPR/Cas9 has been used to target genes involved in 

stress responses and tolerance mechanisms in sugarcane. By 

modifying genes responsible for stress perception and 

signaling, researchers aim to develop stress-tolerant 

sugarcane varieties that can withstand adverse 

environmental conditions. 

 

Yield Improvement 

CRISPR/Cas9 has also been applied to improve sugarcane 

yield by targeting genes involved in flowering and flowering 

synchronization. Flowering induction in sugarcane is crucial 

for seed production and crossbreeding, and precise editing 

of flowering-related genes can lead to improved seed 

production and uniform flowering. 

 

Efficient Delivery Methods 

To deliver CRISPR/Cas9 components into sugarcane cells, 

researchers have explored various methods, including the 

use of viral vectors, protoplast transformation, and particle 

bombardment. These delivery methods aim to efficiently 

introduce CRISPR/Cas9 components into sugarcane cells 

and promote targeted gene editing. 

 

DNA-free Gene Editing 

To avoid the integration of foreign DNA into the sugarcane 

genome, researchers have developed DNA-free gene editing 

approaches using ribonucleoprotein (RNP) complexes. RNP 

complexes, consisting of Cas9 protein and synthetic guide 

RNAs, can be delivered directly into sugarcane cells to 

achieve gene editing without leaving any residual foreign 

DNA. 

 

Multi-allelic Gene Targeting 

Researchers have also demonstrated the potential of 

CRISPR/Cas9 for multi-allelic gene targeting in sugarcane. 

By editing multiple alleles of target genes simultaneously, 

they aim to achieve desired trait combinations and maximize 

genetic improvement. Overall, gene editing technologies 

such as CRISPR/Cas9 hold significant promise for 

advancing sugarcane breeding and crop improvement 

efforts. They offer the potential to develop improved 

sugarcane varieties with enhanced disease resistance, stress 

tolerance, and yield performance, contributing to the 

sustainability and productivity of the sugarcane industry. 

Viral CRISPR/Cas9 technology has already demonstrated its 

revolutionary potential in advancing genome editing and 

crop improvement. As researchers continue to refine and 

expand this technology, its future potential becomes even 

more promising. Here are some key areas where viral 

CRISPR/Cas9 technology is expected to make significant 

contributions: 

 

Precision and Efficiency: Current research is focused on 

enhancing the precision and efficiency of CRISPR/Cas9 

editing. This includes developing more precise Cas9 

variants and optimizing delivery methods to ensure that 

edits are accurately targeted and achieved with high 

efficiency. Improving precision will minimize off-target 

effects and maximize the desired changes in the crop's 

genome. 

 

Expansion to Diverse Crops: While viral CRISPR/Cas9 

has been extensively studied in model plant species and 

major crops, efforts are ongoing to extend its applications to 

a wider variety of plants. Successfully implementing this 

technology in diverse crops will unlock new possibilities for 

agricultural innovation and broaden the range of crops that 

can be improved for various traits. 

 

Epigenome Editing: Epigenome editing involves making 

changes to the chemical modifications of DNA or associated 

proteins without altering the underlying genetic code. This 

emerging area of research holds great promise for 
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controlling gene expression without introducing DNA 

changes. Viral delivery systems can be adapted to deliver 

epigenome editing tools, allowing for more nuanced control 

of gene regulation in crops. 

 

RNA Editing: CRISPR/Cas9 technology is primarily 

known for editing DNA, but there is increasing interest in 

developing RNA-targeting CRISPR systems for precise 

RNA editing. This approach can be useful in fine-tuning 

gene expression levels without permanently altering the 

genome. Viral delivery methods could facilitate the 

introduction of RNA-targeting CRISPR systems into plant 

cells. 

 

Engineering Complex Traits: Viral CRISPR/Cas9 

technology will play a crucial role in engineering complex 

traits, including those controlled by multiple genes or 

influenced by intricate regulatory networks. By targeting 

multiple genes simultaneously or sequentially, researchers 

can design crops with improved agronomic performance and 

stress tolerance. 

 

Redesigning Photosynthesis: Photosynthesis is a 

fundamental process that governs a plant's energy 

conversion and growth. Scientists are exploring the potential 

to redesign photosynthesis using CRISPR/Cas9 to enhance 

crop productivity significantly. This could lead to the 

development of crops that are more efficient in converting 

sunlight into biomass and yield. 

 

Resistance to Emerging Diseases and Pests: As new 

diseases and pests emerge due to changing environmental 

conditions and global trade, viral CRISPR/Cas9 technology 

can be rapidly deployed to confer resistance to these threats. 

This will help mitigate the impact of plant diseases and 

reduce the reliance on chemical pesticides. 

 

Environmental Adaptation: With climate change affecting 

agricultural regions worldwide, there is a growing need to 

develop crops that can thrive in new and challenging 

environments. Viral CRISPR/Cas9 technology can facilitate 

the introduction of stress-tolerance genes into crops, 

enabling them to withstand heat, drought, salinity, and other 

environmental stresses. 

 

Conservation and Biodiversity: CRISPR/Cas9 can also aid 

in conservation efforts by contributing to the preservation of 

endangered plant species and enhancing biodiversity. By 

targeting specific genes associated with key traits in 

endangered plants, researchers can promote their survival 

and restoration in their natural habitats. 

 

Accelerating crop breeding for resilience to biotic and 

abiotic stresses 

The revolutionary CRISPR/Cas9 technology has the 

potential to significantly accelerate crop breeding efforts 

aimed at enhancing resilience to both biotic and abiotic 

stresses (Gajardo et al., 2023) [40]. Biotic stresses caused by 

pathogens such as viruses, bacteria, fungi, and pests, as well 

as abiotic stresses like drought, extreme temperatures, and 

soil salinity, pose significant challenges to global agriculture 

and food security (Husaini, 2022) [54]. With CRISPR/Cas9, 

researchers can precisely target and modify specific genes 

responsible for stress tolerance in crop plants (Nascimento 

et al., 2023) [82]. By introducing beneficial genetic changes, 

breeders can develop crop varieties with enhanced 

resistance to pests and diseases and improved adaptation to 

challenging environmental conditions (Nerkar et al., 2022) 
[85]. The rapid and precise nature of CRISPR/Cas9-mediated 

editing enables the creation of stress-tolerant crops in a 

more time-efficient manner compared to traditional breeding 

methods. This advancement holds great promise for 

boosting agricultural productivity and ensuring food security 

in the face of mounting climate and environmental 

challenges. 

 

Advantages of rapid crop improvement using viral 

delivery of CRISPR/Cas9 

The viral delivery of CRISPR/Cas9 brings about several 

advantages in the realm of crop improvement that contribute 

to greater agricultural productivity. Viral delivery systems 

offer an efficient means of transporting CRISPR/Cas9 

components into plant cells, bypassing the need for time-

consuming tissue culture and regeneration steps (Montecillo 

et al., 2020) [78]. This significantly expedites the process of 

creating genetically edited crops. Additionally, the targeted 

nature of CRISPR/Cas9 editing minimizes off-target effects 

and unintended mutations, ensuring that the desired genetic 

modifications are accurately introduced (Verma et al., 2023) 
[122]. The ability to simultaneously target multiple genes 

further enables the development of crop varieties with 

complex traits, such as improved nutritional content and 

shelf life (Cardi et al., 2023) [24]. Moreover, viral delivery 

allows for the introduction of CRISPR/Cas9 technology into 

diverse crop species, broadening the scope of agricultural 

improvements (Hua Liu 2022) [52]. By harnessing the power 

of viral vectors for CRISPR/Cas9 delivery, researchers and 

breeders can achieve rapid, precise, and reliable crop 

improvements that hold immense potential for meeting the 

growing demands of global food production. 

 

Accelerating crop breeding for resilience to biotic and 

abiotic stresses 

The revolutionary CRISPR/Cas9 technology can 

significantly accelerate crop breeding efforts to enhance 

resilience to both biotic and abiotic stresses (Zaidi et al., 

2020) [139]. Biotic stresses, caused by pathogens such as 

viruses, bacteria, fungi, and pests, as well as abiotic stresses 

like drought, extreme temperatures, and soil salinity, pose 

significant challenges to global agriculture and food security 

(Sheikh et al., 2020) [105]. With CRISPR/Cas9, researchers 

can precisely target and modify specific genes responsible 

for stress tolerance in crop plants. By introducing beneficial 

genetic changes, breeders can develop crop varieties with 

enhanced resistance to pests and diseases and improved 

adaptation to challenging environmental conditions (Nelson 

et al., 2018) [84]. The rapid and precise nature of 

CRISPR/Cas9-mediated editing enables the creation of 

stress-tolerant crops in a more time-efficient manner 

compared to traditional breeding methods (Raj & Nadarajah, 

2022) [89]. This advancement holds great promise for 

boosting agricultural productivity and ensuring food security 

in the face of mounting climate and environmental 

challenges. 
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Advantages of rapid crop improvement using viral 

delivery of CRISPR/Cas9 

The viral delivery of CRISPR/Cas9 brings about several 

advantages in the realm of crop improvement that contribute 

to greater agricultural productivity. Viral delivery systems 

efficiently transport CRISPR/Cas9 components into plant 

cells, bypassing the need for time-consuming tissue culture 

and regeneration steps (Varanda et al., 2021) [121]. This 

significantly expedites the process of creating genetically 

edited crops. Additionally, the targeted nature of 

CRISPR/Cas9 editing minimizes off-target effects and 

unintended mutations, ensuring that the desired genetic 

modifications are accurately introduced. The ability to 

simultaneously target multiple genes further enables the 

development of crop varieties with complex traits, such as 

improved nutritional content and shelf life (Deepa 

Jaganathan 2018) [55]. Moreover, viral delivery allows for 

the introduction of CRISPR/Cas9 technology into diverse 

crop species, broadening the scope of agricultural 

improvements (Hamdan et al., 2022) [46]. By harnessing the 

power of viral vectors for CRISPR/Cas9 delivery, 

researchers and breeders can achieve rapid, precise, and 

reliable crop improvements that hold immense potential for 

meeting the growing demands of global food production. 

 

Contributions to global food security and sustainable 

agriculture 

The application of CRISPR/Cas9 in agriculture has far-

reaching implications for global food security and 

sustainable agricultural practices (S. A. Zafar et al., 2020) 
[136]. By enhancing crop resilience to biotic and abiotic 

stresses, CRISPR/Cas9 can help mitigate losses caused by 

pests, diseases, and adverse environmental conditions (Nazir 

et al., 2022) [83]. Stress-tolerant crops are more likely to 

thrive in challenging climates, leading to increased yields 

and greater stability in food production. Additionally, the 

development of crop varieties with improved nutritional 

content can address malnutrition and dietary deficiencies in 

vulnerable populations (Karavolias et al., 2021) [58]. The 

precise gene editing capabilities of CRISPR/Cas9 also open 

up possibilities for reducing the use of chemical pesticides 

and fertilizers, promoting environmentally friendly and 

sustainable agricultural practices (Van Vu et al., 2022) [120]. 

Moreover, the rapid and efficient crop breeding enabled by 

viral delivery of CRISPR/Cas9 technology can facilitate the 

timely development of new cultivars, keeping pace with 

changing agricultural needs and ensuring a steady food 

supply for an ever-growing global population (Betz et al., 

2023) [17]. Overall, the adoption of CRISPR/Cas9 in 

agriculture holds promise in advancing food security, 

promoting sustainability, and fostering resilience in the face 

of evolving agricultural challenges. 

 

Recapitulation of the significance of viral CRISPR/Cas9 

delivery in crop improvement 

In conclusion, the viral delivery of CRISPR/Cas9 has 

emerged as a transformative tool in crop improvement, 

offering unprecedented precision, efficiency, and versatility 

in genetic editing (Z. Ali, Abulfaraj, et al., 2015) [6]. By 

utilizing viral vectors to deliver the CRISPR/Cas9 

components, researchers and breeders can bypass traditional 

limitations of plant transformation and achieve targeted 

modifications in a wide range of crop species (Z. Ali, Abul-

Faraj, et al., 2015) [7] This technology has demonstrated 

remarkable success in enhancing disease resistance, pest 

tolerance, abiotic stress tolerance, and multiple trait 

improvements in various crops. Moreover, its potential to 

expedite the breeding process and introduce beneficial 

genetic changes more rapidly and accurately has significant 

implications for addressing global challenges in agriculture 

and food security (Ariga et al., 2020) [11]. 

 

Future prospects and challenges in the application of 

viral genome editing technology 

Looking ahead, the future prospects of viral CRISPR/Cas9 

technology in crop improvement are immensely promising 

(Jaganathan et al., 2018) [55]. As research continues, there is 

potential to expand the host range of viral delivery systems, 

making it applicable to a broader spectrum of crop plants 

(Bendix & Lewis, 2018) [16]. Advances in delivery 

efficiency and off-target reduction techniques will further 

improve the precision and safety of CRISPR/Cas9 editing 

(Yip, 2020) [135]. However, challenges remain, such as 

ensuring proper regulation and addressing ethical 

considerations related to genetically modified crops (Dizon 

et al., 2016) [34]. Striking a balance between innovation and 

responsible use will be crucial in harnessing the full 

potential of this technology. 

 

Overall potential to enhance crop resilience against 

biotic and abiotic stresses 

The ability of viral CRISPR/Cas9 delivery to enhance crop 

resilience against biotic and abiotic stresses is of paramount 

importance in securing global food production (Lokhande et 

al., 2019; Wagh, Pohare et al., 2021) [74, 112]. By developing 

stress-tolerant crops, we can mitigate the impact of diseases, 

pests, and adverse environmental conditions, ultimately 

leading to increased agricultural productivity and food 

security (González Guzmán et al., 2022) [45]. Moreover, the 

prospect of simultaneous targeting of multiple traits holds 

great promise for developing crops with comprehensive 

resilience and improved nutritional profiles (Zenda et al., 

2021) [140]. Where Multiomics technological advance will 

allow to find target for genome editing (Shinde et al., 2023; 

Wagh, Pohare, et al., 2021) [108, 112]. The integration of viral 

CRISPR/Cas9 technology with traditional breeding 

approaches can further accelerate progress in crop 

improvement and foster sustainable agricultural practices 

(Arora & Narula, 2017) [12]. 

In conclusion, viral CRISPR/Cas9 delivery represents a 

groundbreaking advancement in the field of crop genetics 

and breeding. Its potential to enhance crop resilience, 

accelerate breeding efforts, and contribute to global food 

security highlights the significance of this technology in 

shaping the future of agriculture (Bohra et al., 2022) [19]. As 

research and development continue, addressing challenges 

and ethical considerations while capitalizing on the 

opportunities will be pivotal in maximizing the benefits of 

viral CRISPR/Cas9 technology for the betterment of 

agriculture and society as a whole. 
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A. Complex formation and target binding, B Cas9 nuclease activity introduces a double-strand break 

(DSB) in the target DNA. C. DSB formation of a double-strand break (DSB) in the target DNA. D. 

Repair of the DSB by the cell’s DNA repair machinery. 
 

Fig 1: Cas9-sgRNA Complex: Mechanisms of DSB Formation and Target Binding 

 

 
 

Fig 2: Comparative Analysis of Nucleic Acid Delivery: Viral vs. Non-Viral Approaches 
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CRISPR-Cas9 systems used for genetic modification in 

plants, various nano-carriers used in drug delivery systems.  

A. Viral Vector Utilizes modified viruses to deliver genetic 

material into cells, engineered to carry therapeutic 

genes for targeted gene delivery.  

B. Nanocarriers: Engineered for specific triggers like pH 

or temperature changes, facilitating controlled gene 

delivery. Stimuli-responsive: Release cargo upon 

encountering triggers. Redox: Responsive to oxidation 

state changes for precise delivery. MicroRNA: Tailored 

for microRNA delivery, regulating cellular processes. 

Functionalities: Magnet: Guided to sites using external 

magnetic fields for targeted delivery. Ultrasound: 

Responsive to ultrasound for controlled, non-invasive 

delivery. 

C. Transfection Agent Chemical compounds facilitating 

entry of genetic material into cells, overcoming cellular 

barriers.  

D. Lipids Fatty molecules forming nanocarrier structures, 

encapsulating genetic material. Nucleic Acid Sequence: 

Delivers specific DNA/RNA sequences, containing 

genetic instructions for desired outcomes. Polymeric 

NPs: Nanoparticles composed of polymers, used in 

nanocarrier fabrication for gene delivery.  

 

Physical Method: Techniques for nanoparticle delivery 

without chemical agents, including electroporation and 

sonication. Fe3O4: Magnetite, an iron oxide nanoparticle for 

magnetically guided delivery. CPPs: Cell-penetrating 

peptides enhancing nanocarrier efficiency. DNA: Genetic 

blueprint for protein synthesis and cellular function. Protein 

Synthesis: Cellular process utilizing DNA instructions for 

protein production. 

 

 
 

Fig 3: CRISPR-Cas9 delivary through virus genetic modification in plants 

 

(A) Cas9 protein and sgRNA complex Delivery methods, 

(B) Cas9-sgRNA complex into the plant cell: 

Agrobacterium and nanoparticles. (F) Target DNA cleavage 

creating a double-strand break (DSB) at the target DNA 

sequence. 

DNA repair (G) Cell repairs the DSB through two main 

pathways: HDR (homology-directed repair) and NHEJ (non-

homologous end joining). 

 
Table 1: Types of viruses optimized for CRISPR/Cas9 delivery 

 

Virus Type Characteristics CRISPR Technology Citation 

Adenovirus Double-stranded DNA virus CRISPR/Cas9 system (Didara et al., 2023) [32] 

Adeno-associated virus (AAV) Single-stranded DNA virus CRISPR/Cas9 system (Y. Wang et al., 2022) [128] 

Lentivirus Single-stranded RNA virus CRISPR/Cas9 system (Dong & Kantor, 2021) [35] 

Retrovirus Single-stranded RNA virus CRISPR/Cas9 system (K. Li et al., 2020) [67] 

Herpes Simplex Virus (HSV) Double-stranded DNA virus CRISPR/Cas9 system (Karpov et al., 2022) [59] 

Adeno-associated virus (AAV) Single-stranded DNA virus CRISPR/Cas9 with chemically modified sgRNA (Kim et al., 2021) [61] 

Lentivirus Single-stranded RNA virus CRISPR-Cpf1 system (Huang et al., 2022) [53] 

Sendai Virus Single-stranded RNA virus CRISPR/Cas9 system (Park et al., 2016) [86] 
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 Table 2: Future Potential of Viral CRISPR/Cas9 Technology 

 

Future Potential of Viral CRISPR/Cas9 

Technology in Agriculture 
Description Citations 

Precision and Efficiency 
Enhancing the precision and efficiency of CRISPR/Cas9 

editing for accurate and targeted modifications 
(Hua et al., 2022) [52] 

Expansion to Diverse Crops 
Extending CRISPR/Cas9 applications to a wide range of plant 

species for diverse agricultural improvements 
(J. Gao et al., 2018) [42] 

Epigenome Editing 
Modifying chemical modifications of DNA or associated 

proteins for precise control of gene expression 
(X. Liu & Liu, 2016) [73] 

RNA Editing 
Developing CRISPR systems for precise RNA editing to fine-

tune gene expression 
(Cox et al., 2017) [30] 

Engineering Complex Traits 
Targeting multiple genes to engineer complex traits in crops 

for improved agronomic performance 
(K. Zafar et al., 2020) [136] 

Redesigning Photosynthesis 
Using CRISPR/Cas9 to redesign photosynthesis for enhanced 

crop productivity 
(Caddell et al., 2023) [23] 

Resistance to Emerging Diseases and Pests 
Rapid deployment of CRISPR/Cas9 to confer resistance to 

new and emerging plant diseases and pests 
(L. Chen et al., 2023) [28] 

Environmental Adaptation 
Introducing stress-tolerance genes to help crops adapt to 

changing environmental conditions 
(A. Zhang et al., 2019) [141] 

Conservation and Biodiversity 
Contributing to the preservation and restoration of endangered 

plant species and promoting biodiversity conservation 
(Mendes et al., 2013) [77] 

Expanding the Host Range for Viral Delivery 
Developing novel viral delivery systems to target a broader 

range of plant species 
(C. Zhang et al., 2022) [142] 

Overcoming Off-Target Effects and Unintended 

Mutations 

Implementing strategies to minimize off-target effects and 

unintended mutations during CRISPR/Cas9 editing 
(He et al., 2020) [143] 

Regulatory and Ethical Considerations in Crop 

Genome Editing 

Addressing the regulatory and ethical aspects of using 

CRISPR/Cas9 in agricultural biotechnology 

(M. Kumar et al., 2023) 
[144] 

Integrating Viral CRISPR/Cas9 Technology 

with Traditional Breeding Approaches 

Integrating CRISPR/Cas9 with conventional breeding 

methods for accelerated crop improvement 
(Rasheed et al., 2021) [90] 
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