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Abstract 

DSM plays a crucial role in addressing the challenges posed by soil degradation, land-use change, and 

global food security. By providing detailed spatial information on soil properties such as texture, 

organic matter content, pH, and nutrient levels, DSM enables more precise land management decisions. 

Farmers can optimize crop selection, irrigation, and fertilization practices based on soil maps generated 

through DSM, leading to improved agricultural productivity and reduced environmental impact. 

Moreover, DSM supports ecosystem management and conservation efforts by facilitating the 

identification of areas vulnerable to erosion, desertification, or pollution. Conservationists can use 

DSM outputs to design targeted interventions for soil restoration and biodiversity conservation. 

Overall, the integration of DSM into soil science and land management practices offers numerous 

benefits, including enhanced resource efficiency, improved decision-making, and better resilience to 

environmental challenges. However, challenges such as data availability, model validation, and 

uncertainty quantification remain significant hurdles in realizing the full potential of DSM. Addressing 

these challenges requires interdisciplinary collaboration among soil scientists, geographers, remote 

sensing specialists, and policymakers to advance the field and harness its potential for sustainable 

development. 

 
Keywords: Digital soil map, machine learning algorithms, environmental covariates 

 

Introduction 

Soil stands as a vital natural asset, serving as the foundation of human agriculture. 

Civilizations flourish in areas endowed with fertile soil, but falter when proper soil 

stewardship is neglected. Additionally, soil plays a pivotal role in the biophysical and 

biogeochemical dynamics of our planet. Across continents, soil acts as a permeable interface 

facilitating interactions among the biosphere, hydrosphere, lithosphere, and atmosphere. 

Grasping the spatial distribution and proper handling of soil is imperative for sustaining a 

thriving society and comprehending the intricate equilibrium of chemical and physical 

processes crucial for life on Earth. Precise mapping of soil characteristics is indispensable for 

effective management, both globally and locally. 

In recent decades, advancements in technology have opened up significant possibilities for 

enhancing the production of soil maps (McKensie et al., 2000) [27]. Utilizing remote sensing 

and photogrammetric methods, we can now generate detailed digital representations of the 

Earth's surface, which, when integrated with digitized paper maps within geographic 

information systems (GIS), facilitate the efficient characterization and analysis of extensive 

datasets. The future direction of soil surveying involves harnessing GIS capabilities to model 

spatial soil variations based on easily mappable environmental factors. Predictive soil 

mapping (PSM) involves constructing numerical or statistical models that correlate 

environmental variables with soil properties, which are then applied to geographic databases 

to generate predictive maps (Franklin, 1995) [11]. PSM aims to achieve three primary 

objectives: (1) optimizing the collection of soil data by leveraging environmental variables; 

(2) creating more accurate representations of soil landscape continuity; and (3) incorporating 

expert knowledge into model development. Furthermore, PSM holds potential for advancing 

pedology and soil geography by offering insights into soil formation processes. 
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Conventional soil mapping 

Pedologists typically utilize the conceptual framework of 

the clorpt principle in traditional soil mapping endeavors, 

incorporating factors of soil formation and landscape 

relationships. Soil surveying is regarded as a scientific 

approach and a system of knowledge, integrating these 

factors and their distribution across the studied region, along 

with observed soil-landscape dynamics, to create maps. 

However, translating this knowledge into maps often 

presents challenges, resulting in maps that serve as 

structured representations reflecting the mental models of 

pedologists but may lack detailed spatial information and 

accuracy assessment. Jenny's clorpt model, on the other 

hand, offers a quantitative approach, allowing the isolation 

of individual factors for study, thereby influencing the 

development of empirical models describing soil formation 

mathematically. These models, which consider climate, 

organisms, topography, parent material, and time, facilitate 

a deeper understanding of soil formation processes. 

Nevertheless, traditional soil mapping techniques reliant on 

ground surveys are limited in providing spatial information 

at desired resolutions, especially on larger scales, and are 

costly and time-consuming. Hence, there's a need for robust 

predictive methods and models to estimate soil properties 

effectively across various scales and locations (Zeraatpisheh 

et al., 2017) [47]. 

 

Digital soil mapping 

Conventional soil survey methods traditionally rely on the 

subjective interpretation of soil features by surveyors, using 

tools such as aerial photographs, Landsat images, and digital 

elevation models (DEMs) to identify geological, landform, 

and vegetative characteristics. These interpretations are then 

validated through on-site field observations. The resulting 

soil maps, although containing a legend of soil types, often 

prove challenging to interpret and utilize due to their 

subjective nature and potential for errors. Recognizing these 

limitations, there's been a push towards modernizing soil 

mapping techniques through digital soil mapping. This 

approach involves the utilization of contemporary 

quantitative methods, including field and laboratory 

observations, along with spatial and non-spatial soil 

inference systems (Fig 1.). Digital soil mapping 

encompasses various methodologies, such as computer-

assisted soil cartography and predictive soil mapping, aimed 

at creating spatial soil information systems (Lagacherie, 

2008) [22]. However, it's important to note that digital soil 

mapping is not solely about computerized mapping; it 

involves three core components: input (gathered through 

field observations and sampling techniques), process (using 

mathematical or statistical models to relate soil observations 

with environmental factors), and output (providing spatial 

soil information with prediction uncertainty). One 

commonly used method in digital soil mapping is the spatial 

soil prediction function with autocorrelated error (SSPFe),  

 

Sc or Sa = f (s, c, o, r, p, a, n) + e  

 

This equation helps to predict soil classes or attributes based 

on factors like soil properties, climate, organisms, relief, 

parent material, age, and spatial position, while accounting 

for spatially correlated residuals. Unlike other models, such 

as Jenny's factorial model, the scorpan model focuses on 

empirical observations for quantitative prediction rather than 

explaining soil formation factors. Additionally, soil 

properties can be used as predictive factors, allowing for 

reciprocal predictions between soil classes and properties. 

The second most common factor in DSM research is the 's' 

factor (McBratney et al., 2003) [26]. This factor relies on the 

idea that soils can predict other soils, drawing from various 

sources: traditional soil surveys, proximal soil sensors, and 

remote sensors. 

 

Conventional soil survey 

These maps contain a wealth of information collected over 

years of fieldwork by previous soil scientists. Despite the 

shift to digital methods, traditional maps remain valuable for 

predicting soil variables within DSM. 

 

Remote sensors 

These instruments, mounted on aircraft or satellites, collect 

data without physical contact. Spectral sensors, particularly 

multispectral and hyperspectral ones, are commonly used in 

DSM. For instance, Landsat 8 measures visible and infrared 

light. Spectral sensors can also be mounted on aircraft or 

remotely piloted aerial systems for higher resolution data. 

Using spectral sensors for DSM has challenges, including 

vegetation obstruction, atmospheric effects, and topographic 

distortions. Consideration must also be given to the timing 

and conditions of imagery capture. Additionally, remote 

sensors typically capture data only from surface soils (5–6 

cm). Despite these challenges, spectral measurements under 

bare-soil conditions have shown good correspondence with 

soil properties such as mineralogy, texture, organic matter, 

moisture, and others (Mulder et al., 2011) [31]. 

 

Proximal soil sensors 

Unlike distant sensors which operate from above, proximal 

sensors are a set of ground-based tools designed for gauging 

soil traits potentially linked to other soil features. Since they 

operate at ground level, proximal soil sensors can detail soil 

diversity more finely than remote data, making them ideal 

for field-scale soil mapping. Among these sensors, 

electromagnetic induction (EMI) sensors have been crucial 

for DSM and precision farming studies (Doolittle and 

Brevik, 2014) [10]. The EMI sensor measures soil's apparent 

electrical conductivity (ECa) across various depths. EMI 

surveys often predict soil attributes like salinity, clay 

content, and moisture; additionally, secondary traits like soil 

density and organic carbon can be inferred from ECa 

readings. EMI sensors are just one kind of proximal sensor-

others may include gamma radiometric sensors, ground-

penetrating radar, and electrical resistivity sensors. 
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Fig 1: Workflow of Digital soil mapping 

 

Climate (c) 

This aspect is among the less utilized scorpan aspects 

(McBratney et al., 2003) [26]. Initially, local weather is 

greatly shaped by topography, and thus, topographic indices 

like height and direction could stand in for a weather factor. 

Nevertheless, as the study area expands to national and 

global levels, significant climatic trends have been found to 

significantly affect various soil attributes-as seen in the 

global SoilGrids250m product (Hengl et al., 2017) [16]. 

Regarding weather data, typical factors include average 

yearly temperature, yearly precipitation, and 

evapotranspiration (McBratney et al., 2003) [26]. These 

datasets might originate from sensors aboard satellites; 

nevertheless, weather model data, often sourced from 

weather stations, (for instance, WorldClim, ClimateNA) 

could also be utilized. Besides incorporating present weather 

conditions into a model, historical and anticipated future 

conditions might also be employed to replicate the impacts 

of shifting weather conditions in terms of comprehending 

the spatial and temporal trends of soil attributes. 

 

Organism (o) 

Satellite imagery provides a wealth of vegetation data 

crucial for Digital Surface Model (DSM) development. 

Various vegetative indices, like the normalized difference 

vegetation index (NDVI), are derived from satellite band 

ratios, offering insights into vegetative greenness based on 

near-infrared and red wavelengths. Alongside NDVI, other 

indices such as the Soil Adjusted Vegetation Index (SAVI), 

Transformed SAVI (TSAVI), Modified SAVI (MSAVI), 

and the Global Environment Monitoring Index (GEMI) are 

utilized (Maynard and Levi, 2017) [25]. These indices, along 

with remotely sensed data like thermal imagery, prove 

effective in predicting soil moisture, color, texture, and 

water holding capacity, as well as assessing plant growth. 

Researchers also leverage processed satellite imagery to 

create landcover maps and integrate crop data as a covariate 

for spatial prediction. Crop yield, a product of soil-plant-

atmosphere interaction, can serve as an indicator for soil 

properties such as clay, moisture, and nutrient content, 

influencing plant growth. 

 

Relief (r) 

The r factor's importance in DSM is widely acknowledged 

(McBratney et al., 2003) [26]. A fundamental aspect of DSM 

studies involves utilizing a digital elevation model (DEM), 

which comprises elevation data arranged in a raster format. 

DEMs can originate from various sources, including 

digitized contour maps, interpolated ground measurements, 

or data obtained through remote sensing via satellites or 

RPAS-mounted sensors. Their widespread availability and 

typically cost-free accessibility make DEMs highly 
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advantageous. Their usefulness lies in their adaptability for 

computing a diverse range of topographic parameters. For 

instance, DEMs facilitate the characterization of 

morphometric features at local scales (e.g., slope, aspect, 

curvature), landscape scales (e.g., relative slope position), 

and hydrological patterns (e.g., topographic wetness index), 

all of which significantly influence soil distribution. 

 

Parent material (p) 

Soil parent material data is often obtained from digital 

geological maps. It's crucial to acknowledge the origin of 

soil materials when utilizing these maps. For instance, a 

bedrock geology map is more valuable in regions without 

glaciers, where soil primarily originates from weathered 

bedrock. 

 

Age (a) 

The age aspect can define the duration of pedogenesis and 

can be approximated by the age of the substrate or material 

from which the soil forms (McBratney et al., 2003) [26]. In 

DSM, there's limited application of this data due to 

challenges in assessing soil age in a GIS-friendly format. A 

potential solution for integrating this aspect into DSM could 

involve considering human-induced landscape modifications 

that affect soil characteristics and types. 

 

Spatial Position (n)  

The n factor can be integrated in various ways: by utilizing 

the spatial coordinates of soil sample spots or employing a 

raster layer showing the proximity to a geographical feature. 

Waldo Tobler’s First Law of Geography (Tobler, 1970) [43] 

articulates: "Everything is related to everything else, but 

near things are more related than distant things." When 

applied to DSM, this implies that neighboring soil samples 

are more likely to exhibit similar properties compared to 

distant ones. Thus, the correlation between sampling 

location, its corresponding soil value, and its proximity to 

nearby sampling locations can be utilized to forecast 

(interpolate) soil values between those points using 

geostatistical methods. Spatial position details can also be 

included by measuring the distance or closeness of each 

pixel in the study area to specific geographical features or 

reference points, thereby capturing contextual landscape 

information. For instance, a distance-to-nearest-stream layer 

can be calculated using a stream network; likewise, similar 

distance-based layers can be computed for proximity to the 

ocean, lakes, rivers, geomorphic formations, and other 

features (Lagacherie and Mcbratney, 2006) [12]. 

 

Prediction of soil property 

Environmental factors and soil characteristics are analyzed 

using appropriate models to estimate soil properties in 

unknown areas. These methods can predict both qualitative 

and quantitative outcomes (Kidd et al., 2014) [20]. Various 

models were evaluated for predicting soil properties. 

Common models include Multiple linear regression 

(Thompson et al., 2006; Triantafilis et al., 2009) [42, 46], 

neural networks (Malone et al., 2009; Mosleh et al., 2016) 

[24, 30], generalized linear models (McKenzie and Ryan, 

1999) [28], ordinary Kriging (Santra et al., 2017) [37], kriging 

with external drift (Santra et al., 2017) [37], regression 

Kriging (Hengl et al., 2004) [15], classification and regression 

trees (Breiman et al., 1984) [4], k-nearest neighbor 

(Mehrjardi et al., 2015) [41], multinomial logistic regression 

(Kempen et al., 2009) [19], logistic model trees (Giasson et 

al., 2006) [13], Support vector machine (Priori et al., 2014) 

[34], and Random Forest model (Dharumarajan et al., 2017; 

Sreenivas et al., 2016) [9, 39]. 

Digital soil mapping relies on math models to depict soil 

distribution spatially. These models approximate reality and 

face uncertainty. Due to their quantitative nature, they offer 

quantitative assessments of accuracy and uncertainty for soil 

properties or classes. These estimates, along with soil spatial 

predictions, are integral to any mapping program. Prediction 

performance is evaluated by comparing predicted and 

observed values. Ideal models show minimal differences 

between the two. Evaluation metrics include coefficient of 

determination, root mean squared error, mean error, and 

Lin's concordance correlation coefficient for soil properties. 

For soil classes, accuracy is assessed using overall accuracy 

rate and kappa index. A good model typically exhibits 

values close to 1 for these metrics (Congalton, 1991) [7]. 

To quantify uncertainty in soil property predictions, digital 

soil mapping employs prediction intervals. These intervals 

delineate the likely range of values wherein the true value 

may lie. Typically, digital soil mapping employs 90% 

prediction intervals, indicating the range where a new 

measurement will typically fall 9 times out of 10 (Arrouays 

et al., 2017) [1]. Prediction Interval coverage percentage 

(PICP) serves as an indicator of uncertainty within 

uncertainty. In the context of soil class predictions, the 

confusion index is utilized to measure prediction uncertainty 

(Burrough et al., 1997; Odgers et al., 2014) [5, 32], which is 

grounded in the similarity of soil class occurrences in each 

grid cell. 

 

Soil sampling 

Soil sampling plays a crucial role in DSM, significantly 

impacting its accuracy and cost. Over the past decade, 

considerable advancements have been achieved in soil 

sampling techniques, aiming to enhance soil mapping 

performance while minimizing the number of samples 

required. Strategies such as design-based sampling 

(including simple random sampling, stratified random 

sampling, systematic random sampling, etc.) and model-

based sampling (like geostatistical sampling and centered 

grid sampling) are commonly employed in soil mapping 

endeavors. Additionally, the conditioned Latin hypercube 

sampling method has gained popularity for soil mapping due 

to its ability to accurately capture environmental covariate 

variability in feature space. However, various potential 

access constraints may hinder sampling at desired locations. 

Scientists have suggested a flexible Latin hypercube 

sampling method to address operational sampling challenges 

in vast and remote areas, including constraints such as land 

use, land cover, rugged terrain, and unforeseen roadblocks. 

It is anticipated that more adaptable and effective soil 

sampling techniques will be devised for DSM. 

 

Application of DSM 

Initially, DSM primarily focused on modeling soil 

landscapes, analyzing the links between soil characteristics 

and environmental factors. Over time, the emphasis of soil 

mapping has shifted from merely studying soil variation and 

predictive techniques to its application across diverse fields. 

Agriculture management (Ji and Peters 2003; Srinivasan et 

al. 2010) [18, 40], evaluation of ecosystem services (Tóth et al. 

2013) [45], and land assessment (Bouma 1989) [3] have been 
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the primary beneficiaries. These applications are largely 

grounded in soil functions, encompassing biomass 

production, nutrient and water storage and filtration, 

biodiversity support, provision of raw materials, carbon 

storage, and preservation of geological and archaeological 

heritage (Tóth et al. 2013) [45], all of which directly or 

indirectly benefit humanity. However, conventional soil 

mapping based solely on general attributes or soil type is 

inadequate. Additional parameters such as soil salinity (Li et 

al. 2015) [23], trace elements, horizon thickness (Chaplot et 

al. 2010) [6], water holding capacity (Piedallu et al. 2011) [33], 

and electrical conductivity (Gasch et al. 2015) [12] should be 

considered. Soil maps must be integrated hierarchically with 

quantitative parameters like water potential and soil 

shrinkage curves (Salahat et al. 2012) [35] to effectively 

support agronomic models and other systems. Recent 

studies have expanded to include predictive aspects such as 

soil quality (Moncada et al. 2014) [29], soil parent material 

(Heung et al. 2014) [17], soil biological indicators (Shahbazi 

et al. 2013) [38], and hydro-functional mapping (Tóth et al. 

2017) [44]. 

 

Advances in DSM 

In short, over the past decade, digital soil mapping has seen 

four key shifts. Initially, studies focused on small areas, 

driven by exploration and experimentation. However, 

advancements have led to a transition towards examining 

relatively larger areas to assess the effectiveness of various 

mapping methods and meet spatial information needs. 

Simultaneously, models have evolved from simple to 

complex, mirroring the shift from straightforward to 

intricate landscapes. Simple landscapes, governed by few 

environmental factors, exhibit a mostly linear soil-

environment relationship, while complex ones involve 

multiple factors with a nonlinear and nonstationary 

relationship. While linear regression suffices for the former, 

geographically weighted regression or tree-models become 

necessary for the latter. Additionally, there's been a 

progression from 2D to 3D mapping to offer comprehensive 

soil pattern data. Lastly, the scope of applications has 

broadened from agricultural management to encompass 

ecosystem services (Arrouays et al., 2020) [2]. 

 

Conclusion 

The resurgence in soil science and growing interest are 

placing soils back on the global agenda, spanning 

ecosystems, climate change, and agriculture (Hartemink and 

McBratney 2008) [14]. Advanced technologies are required to 

model soil properties and processes accurately at fine scales, 

but pinpointing the optimal prediction methods is 

challenging due to varying soil-landscape relationships 

across different terrains. The forthcoming DSM framework 

aims to surpass existing paradigms by integrating soil 

forming factors differently for prediction. According to 

Sanchez et al. (2009) [36], DSM involves only three steps, 

with spatial prediction being just one aspect. 

Recommendations for evidence-based soil management are 

crucial for diverse end users, connecting soil mapping, 

function analysis, legacy data, and social factors. Thus, 

conceptual soil mapping models must expand with a 

thorough grasp of surface processes. Traditional polygonal 

soil maps, including two-dimensional ones, may prove 

inadequate for conveying soil details. Further advancements 

in virtual reality techniques are necessary for modeling soil 

characteristics such as color, texture, spectrum, temperature, 

and moisture. Additionally, notable progress in soil science 

involves generating global soil maps that can directly 

convey soil functions. 

In forthcoming times, it is imperative to align regional and 

national soil maps to address global concerns. Identifying 

potential biases and uncertainties during prediction is 

crucial, necessitating a focused approach on soil variation. 

Numerous hurdles lie ahead in soil mapping endeavors, 

including simulating regional-scale soil heterogeneity, 

mapping in flat terrains, and integrating soil mapping with 

spectroscopy. Urbanization triggers rapid land use changes, 

resulting in substantial spatial soil variations challenging 

traditional models. Similarly, intense human activities 

amplify uncertainties in accurate soil mapping, particularly 

in transitioning areas like villages, suburbs, and urban-rural 

interfaces due to modern agricultural practices. (Dash et al., 

2022) [8]. 
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