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Abstract 

Potato cultivation is essential for ensuring global food security, yet it faces significant threats from 

diseases such as early blight and late blight, resulting in substantial yield losses. To address this 

challenge, integrated disease management strategies are pivotal, encompassing cultural practices, 

disease-resistant varieties, and timely fungicide applications. Recent advancements in artificial 

intelligence (AI), particularly in deep learning, hold promise for revolutionizing disease detection in 

agriculture. This study aims to contribute to these efforts by developing a highly accurate and efficient 

system for early disease detection in potato crops using deep learning techniques. Through the 

utilization of convolutional neural networks (CNNs), transfer learning, and data augmentation, the 

proposed model showcases significant potential in automating the identification and classification of 

potato leaf diseases. Rigorous experimentation and evaluation demonstrate that the proposed CNN 

model achieved an impressive accuracy of 97.82% in classifying potato early and late blight diseases. 

These findings underscore the efficacy of CNNs in agricultural disease management and highlight the 

transformative role of AI technologies in bolstering global food security efforts. 

 
Keywords: Potato disease detection, convolutional neural networks (CNN), deep learning, early blight 

and late blight, machine learning 

 

Introduction 

Potato cultivation is vital for global food security, yet it confronts considerable challenges 

from diseases like early blight and late blight, attributed to pathogens such as Alternaria 

solani and Phytophthora infestans, resulting in notable yield reductions. Integrated disease 

management strategies are essential, encompassing cultural practices, employment of 

disease-resistant varieties, and timely application of fungicides (Vilvert et al., 2022) [16]. 

Managing pests and diseases in potato crops entails a blend of biological, cultural, and 

chemical approaches, including practices like strategic irrigation and maintaining high 

standards of crop hygiene. Creating a comprehensive disease management plan is essential, 

including proper seed and soil treatment to prevent storage growth and preserve potato 

quality. In storage management, post-harvest options like proper temperature control, airflow 

management, and the use of fungicides are crucial in managing diseases effectively. In 

summary, preventive measures like seed treatments, soil treatments, integrated pest 

management strategies, and proper storage management are essential in combating diseases 

threatening potato production and promoting sustainable agricultural practices (Mora et al., 

2021) [11].  

Artificial intelligence (AI) technologies, notably deep learning, present promising avenues 

for transforming disease detection in agriculture. Through techniques like convolutional 

neural networks (CNNs), researchers have made significant strides in automating the 

identification and classification of plant diseases using visual symptoms. These 

advancements offer the potential to accelerate diagnosis, facilitating early detection of 

diseases that could otherwise cause significant crop productivity losses. Scholars like 

Kuricheti et al. (2021) [8] have investigated deep transfer learning-based approaches, 

showcasing the efficacy of CNN models in accurately classifying potato leaf diseases. Their 

work contributes to establishing more efficient disease management strategies in agriculture. 

International  Journal  of  Advanced Biochemistry Research 2024; 8(3): 644-653 

 

http://www.biochemjournal.com/
https://doi.org/10.33545/26174693.2024.v8.i3h.811


 

~ 645 ~ 

International Journal of Advanced Biochemistry Research  https://www.biochemjournal.com 

   
 
This study endeavors to contribute to the ongoing 

improvement of agricultural practices by employing AI and 

deep learning techniques. Through the utilization of deep 

learning, transfer learning, and data augmentation 

methodologies, our aim is to develop a highly precise and 

effective system capable of detecting plant diseases early, 

thereby mitigating their detrimental impact on potato crop 

yields. Ramya and Kumar (2021) [12] have emphasized the 

importance of deep transfer learning architectures in their 

research, which leverage multiscale feature extraction and 

batch normalization to enhance the accuracy of plant disease 

detection and classification. These findings underscore the 

potential of AI-driven approaches in equipping farmers with 

proactive disease management tools, ultimately promoting 

greater food security and sustainability in potato production 

worldwide. 

The integration of AI technologies presents significant 

promise in tackling the challenges posed by plant diseases in 

agriculture. Through the application of deep learning 

techniques, researchers and agricultural stakeholders can 

create more effective and precise systems for disease 

detection and management, ultimately safeguarding crop 

yields and bolstering food security. As evidenced by studies 

such as that of Ramya and Kumar (2021) [12], the 

implementation of advanced neural network architectures 

and optimization techniques can notably enhance the 

accuracy and dependability of disease identification 

processes. Continued research and innovation in this domain 

are essential to further refine AI-driven solutions and 

facilitate their widespread adoption, ultimately benefiting 

farmers and global food systems alike. 

 

Related works  

The application of deep learning models, particularly 

Convolutional Neural Networks (CNNs), has exhibited 

significant success in detecting and classifying plant 

diseases, notably those affecting potato crops. Numerous 

researchers have concentrated on disease prediction in 

potato leaves, utilizing the Plant Village dataset to train their 

models effectively. Khalifa et al. (2021) [7] introduced a 

CNN model for identifying early blight (EB), late blight 

(LB) diseases, and healthy classes, trained on the 

PlantVillage dataset. Sanjeev et al. (2021) [15] employed a 

Feed-Forward Neural Network (FFNN) for disease 

identification using the Plant Village dataset. Rozaqi and 

Sunyoto (2020) [14] developed a CNN model for classifying 

EB and LB diseases in potato leaves, also trained on the 

Plant Village dataset. Barman et al. (2018) presented a self-

built CNN (SBCNN) model for detecting EB, LB, and 

healthy classes of potato leaf diseases using the Plant 

Village dataset. Tiwari et al. (2020) [18] utilized a pre-trained 

VGG19 model for feature extraction and various classifiers 

to classify EB and LB diseases in potato leaves, trained on 

the Plant Village dataset. Lee et al. (2020) [10] developed a 

CNN model to identify potato plants with EB, LB 

infections, and healthy leaves, utilizing region-specific data 

from the Plant Village dataset. Islam et al. (2017) [6] 

proposed a segment-based and multi-SVM model for 

detecting various potato diseases, including EB, LB, and 

healthy leaves, incorporating the Plant Village dataset. A 

recent study by Rashid et al. (2021) [13] introduced a novel 

deep learning technique called Potato Leaf Disease 

Detection using Convolutional Neural Network (PDDCNN) 

for early blight and late blight disease recognition in 

potatoes. This method demonstrated optimal performance 

with fewer parameters compared to existing models. 

Collectively, these studies underscore the effectiveness of 

deep learning models like CNNs in accurately detecting and 

classifying potato leaf diseases, highlighting the importance 

of leveraging specific datasets like Plant Village for training 

these models effectively. 

The manuscript under discussion aims to utilize 

Convolutional Neural Networks (CNNs) and deep learning 

techniques to tackle potato early and late blight diseases in 

agriculture. The authors seek to provide scalable and cost-

effective solutions for potato farmers, potentially benefiting 

the global potatoes industry. The study's key findings 

highlight the success of CNNs, particularly when combined 

with transfer learning, in identifying potato leaf diseases. 

Transfer learning, involving the adaptation of pre-trained 

models to new tasks, enhances model effectiveness. 

Additionally, the authors explore methods such as 

hyperparameter tuning to optimize the deep learning model's 

performance. This research not only contributes to the 

agricultural technology field by showcasing the efficacy of 

deep learning in disease identification but also lays the 

groundwork for scalable solutions that could potentially 

address other plant diseases. Overall, the findings carry 

implications for enhancing disease management practices, 

ultimately benefiting potato farmers and the broader 

potatoes industry. 

 

Methodology 

The methodology for developing the proposed CNN model 

involves outlining its architecture, training process, 

experimental setup, and dataset preparation. Additionally, it 

describes the workflow for incorporating augmented images 

into the training set, applying techniques such as rotation, 

flipping, zooming, and rescaling, each with specific 

parameters. The dataset is split into an 80:20 train-test split, 

with further details provided in Table 1. To categorize 

illnesses in potato leaves, automated feature extraction using 

deep CNNs and preprocessing of collected images are 

employed, with dataset images selected from public 

databases like Plant Village, Kaggle, and Mendeley based 

on intensity colour changes and differences in leaf form and 

size. Transfer learning with pre-trained models like NASNet 

Mobile, MobileNetV2, and AlexNet is utilized. A 

generalized overview depicted in Figure 1 illustrates the 

classification of potato plant leaf disease using transfer 

learning with a dataset from a public database. Challenges in 

the literature, such as incorrect identification and variation 

in diseases, are addressed by the proposed multi-level deep 

learning model, utilizing YOLOv5 image segmentation and 

a novel potato leaf disease detection convolutional neural 

network (PDDCNN) for accurate detection of early blight 

and late blight diseases. 

 

Dataset Collection 

In this study, the dataset utilized comprises high-resolution 

images of potato leaves affected by potato early and late 

blight (PEL) disease, as well as images of healthy potato 

leaves, sourced from Kaggle. With a total of 1152 images, 

early blight symptoms include small, dark spots on leaves 

and stems, which expand and turn yellow, eventually 

causing lower leaves to defoliate, and fruit spots rot at the 

stem. Late blight symptoms involve brown spots on plant 

stems, rapidly expanding and producing white fungal 
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growth in wet conditions, leading to stem collapse and dark 

brown lesions, whereas healthy instances show no 

abnormalities. Each image underwent thorough 

examination, with only those devoid of deformities 

considered healthy. Selection criteria included visible blight 

symptoms for diseased cases and a normal appearance for 

healthy leaves. These images were annotated to denote the 

presence or absence of potato early and late blight disease, 

categorized as diseased or healthy, respectively. 

Additionally, 1152 potato leaf images from the Plant Village 

dataset, comprising three categories, were analyzed. The 

dataset was divided into training and testing sets in an 80/20 

ratio for training and validation, respectively. Image 

dimensions were resized to 256 x 256 x 3 pixels to ensure 

compatibility with the Inception-v3 model and enable 

computationally feasible training. 
 

Data Pre-processing 

To maintain consistent input dimensions, all images were 

resized to 224x224 pixels. To augment the dataset and 

increase the number of images in each class, various data 

augmentation techniques were applied. These techniques 

aim to expand the dataset size and mitigate overfitting 

during the model training process by incorporating 

augmented images into the training set. The augmentation 

process significantly bolstered the model's robustness by 

exposing it to diverse variations in input data. Rotation, 

flipping, zooming, and rescaling were among the 

augmentation techniques applied, each with specific 

parameters such as width shift range, height shift range, 

shear range, zoom range, and horizontal flip. This 

augmentation strategy effectively expanded the dataset, 

enabling the model to learn from a broader spectrum of 

examples and improve its ability to generalize patterns. 

Following augmentation, the dataset underwent an 80:20 

train-test split, allocating 80 per cent for model training and 

reserving 20 per cent for performance evaluation. This 

partitioning ensured that the model could learn from 

augmented data during training while facilitating a 

comprehensive assessment of its generalization capabilities 

on unseen data during testing. For further insights into the 

dataset's composition and characteristics, detailed 

information is provided in Table 1. 
 

Image pre-processing  

In addressing the presence of noise in contaminated plant 

leaf images, various image pre-processing methods are 

employed to enhance training accuracy performance. One 

such technique involves image clipping, where the leaf 

image is cropped to isolate the area of interest, thus 

removing extraneous elements such as leaf sand or dust. 

Additionally, smoothing filters are applied to achieve image 

smoothing, further refining the visual clarity of the leaf 

image. In image processing, techniques like ZCA whitening, 

standardized rotation, and translation are utilized for data 

augmentation, aiding in the augmentation of the dataset and 

improving the model's ability to generalize patterns 

effectively. These pre-processing methods collectively 

contribute to optimizing the quality and usability of the 

dataset for training deep learning models, ultimately 

enhancing the accuracy and reliability of disease detection 

algorithms applied to plant leaves. 

 

Image Segmentation: Image segmentation is a fundamental 

technique for classifying each pixel in an image into specific 

classes, as described by Belay et al. (2022) [3]. Given the 

diverse sizes of potato plant leaves, effectively locating and 

segmenting the image is crucial for improving the 

identification of potato diseases by reducing background 

interference and focusing on the regions of interest for 

feature extraction by models such as Inception v3. This 

segmentation technique is achieved based on various 

intensity discontinuities and similarities among pixels, as 

explained by Ho and Wookey (2020) [5]. Image 

segmentation involves partitioning the image into various 

parts with similar features or rough resemblance, aiding in 

identifying feature similarities in the grey levels between 

pixels within an image region. In this work, segmentation is 

accomplished by converting RGB color mode images to the 

HIS model. This approach enhances the model's ability to 

extract relevant features and improves disease identification 

accuracy by isolating the regions of interest within the 

potato leaf images. 

 

Classification  

The considerable variability in size, shape, color, texture, 

background, layout, and imaging illumination of plant 

diseases and pests in real-time environments presents 

significant challenges for detection. To address these 

challenges, Convolutional Neural Networks (CNNs) are 

widely adopted due to their robust feature extraction 

capability. CNN architectures typically consist of cascaded 

convolutional and pooling layers for feature extraction, 

followed by fully connected layers and a softmax 

classification layer for identification and classification based 

on given inputs. This design enables CNNs to effectively 

learn and represent complex patterns and relationships 

within image data, making them well-suited for tasks such 

as plant disease and pest detection in diverse environmental 

conditions. 

 
Table 1: Details of the proposed dataset 

 

Dataset 

Potato 

Early 

Blight 

Potato 

Healthy 

Potato 

Late 

Blight 

Total 

Train 400 122 400 922 

Test 100 30 100 230 

 

Feature Extraction 

In Belay et al. (2022) [3], deep learning techniques were 

employed for feature extraction to automatically extract 

deep characteristics from acquired images. This process aids 

in classifying the given images into predefined classes, such 

as diseased (PEL) and healthy. 

 

Feature extraction using the proposed CNN model 

Feature extraction plays a pivotal role in object recognition 

and classification, particularly in digital image analysis. It 

involves extracting pertinent features from images crucial 

for distinguishing between different classes of objects while 

maintaining consistency within the same class. This process 

serves as a crucial dimensionality reduction step, essential 

for efficient pattern recognition and machine learning. In the 

specific domain of identifying potato leaf diseases, deep 

learning techniques, notably Convolutional Neural 

Networks (CNNs), are utilized for feature extraction from 

acquired images. By automatically extracting deep 

characteristics from these images, CNNs facilitate the 

classification of the images into predefined classes such as 
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diseased (PEL) and healthy leaves. CNNs, inspired by 

biological models of human vision, operate through multiple 

layers that mimic the human visual system's processing 

hierarchy, capturing spatial and temporal dependencies 

within images by applying filters across different layers. 

Feature extraction with CNNs condenses the image 

representation, requiring fewer computations while 

preserving essential features for accurate prediction. The 

CNN architecture comprises several layers, including 

convolutional layers, ReLU layers, pooling layers, dropout 

layers, and fully connected layers. In this study, a 

hierarchical structure of feature maps is constructed by 

consecutively applying learnable filters to the input image. 

The initial convolutional layer captures low-level features 

such as edges, corners, texture, and lines, while subsequent 

layers extract higher-level features based on more complex 

characteristics, aiding in the identification of objects and 

structures within the image. 

To optimize the CNN model for feature extraction, three 

convolutional layers were employed to ensure the capture of 

both low-level and high-level features relevant to potato leaf 

disease classification, ultimately leading to the highest 

accuracy in the experiment. Additionally, before feature 

extraction, pre-processing techniques such as 

standardization, thresholding, and binarization were applied 

to digital images. These techniques help enhance the quality 

of the images and improve the extraction of meaningful 

patterns. The extracted patterns are then utilized to form 

feature vectors, which aid in the recognition and 

categorization of objects during the classification process. In 

this study, feature extraction was specifically performed 

using the inception-v3 model, a widely used architecture 

known for its effectiveness in image classification tasks. 

Leveraging the inception-v3 model further enhances the 

efficacy of the classification process, enabling the accurate 

identification of potato leaf diseases based on the extracted 

features. 

 

Model Training 

After the CNN network architecture was utilized to extract 

features from the input images, the CNN model underwent 

training using a set of labeled training images. 

Subsequently, the classification process categorized the data 

into the desired categories using the retrieved features, as 

described by Belay et al. (2022) [3]. 

Softmax 

In this study, CNN models served as input data for the 

SoftMax classifier to determine the probability of the 

expected label for potato diseases. The SoftMax classifier, 

utilized for recognition purposes, aims to ascertain the 

likelihood that the input belongs to a specific class. It 

produces values in the range of 0 to 1, where the sum of all 

probabilities equals one, as explained by Ho and Wookey 

(2020) [5]. The notable advantage of using SoftMax lies in its 

ability to easily define the output probabilities range, along 

with its efficiency in terms of training speed and prediction 

accuracy. Furthermore, SoftMax accepts the output from the 

last fully connected layer and is employed for classifying 

potato images into specific classes, such as PEL or healthy. 

The CNN model was initialized with pre-trained weights 

derived from the selected architecture. The training data was 

then fed into the model, and the model parameters were 

optimized using a suitable optimization algorithm, such as 

Adam. Throughout the training process, iterations over the 

training set occurred for a predetermined number of epochs, 

while adjusting the learning rate to minimize the 

classification loss and enhance the model's performance. 

 

Hyperparameter Settings 

In the study by Belay et al. (2022) [3], hyperparameters play 

a crucial role in optimizing the model's performance. These 

settings, determined before training begins, significantly 

impact the model's learning process. Table 2 summarizes the 

hyperparameters employed throughout the model training. 

Various aspects of the model, such as optimization 

algorithms, learning rates, batch sizes, and regularization 

techniques, are fine-tuned to achieve optimal performance. 

 

Optimization algorithms 

Regarding optimization algorithms, the proposed model 

utilizes the Adam optimization technique to minimize the 

error rate. Adam is widely used in deep learning research 

due to its effectiveness in adjusting model weights and 

modifying parameters to minimize the loss function. This 

optimization method calculates an adaptive learning rate for 

each parameter, scaling the learning rate with squared 

gradients and a moving average of the gradient. By 

leveraging Adam optimization, the model efficiently 

updates its weights via backpropagation of error, ultimately 

enhancing its ability to learn and generalize from the 

training data. 

 

 
 

Fig 1: Architecture used in the study 
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Learning rate 

In the study conducted by Belay et al. (2022) [3], the learning 

rate plays a crucial role in controlling the amount of weight 

updated during backpropagation, a fundamental aspect of 

training the proposed model. Determining the appropriate 

learning rate was identified as one of the most challenging 

components of the experiment. Through various 

simulations, it was discovered that training at a low learning 

rate takes longer compared to training at a higher rate. 

However, despite the longer training time, supplying a lower 

learning rate yielded better performance in the model. As a 

result, a learning rate of 0.001 was selected for all 

experiments conducted in the study. This carefully 

determined learning rate was crucial in optimizing the 

model's training process, ultimately leading to improved 

performance and accuracy in classifying potato leaf 

diseases. 

 

Loss function 

In the proposed model discussed by Belay et al. (2022) [3], 

the choice of loss function is crucial in evaluating how 

effectively the model achieves its specified goal. The loss 

function, also known as a cost function, quantifies the 

disparity between the predicted outputs of the model and the 

actual labels. This selection is influenced by factors such as 

the activation functions employed in the model's output 

layer and the nature of the problem being addressed (e.g., 

regression or classification). Since the proposed model is 

aimed at solving a classification challenge, specifically 

categorical classification, SoftMax is employed as the 

activation function in the final fully connected layer to 

determine the class label. Consequently, for this type of 

classification problem with more than two classes, 

Categorical Cross-Entropy (CCE) loss function is chosen. 

Although other loss functions like Binary Cross-Entropy 

(BCE) and Mean Squared Error (MSE) exist, Categorical 

Cross-Entropy is recommended for problems with multiple 

classes due to its effectiveness in handling such scenarios. 

This choice ensures that the model's performance is 

accurately evaluated and optimized throughout the training 

process, leading to improved classification accuracy and 

generalization. 

 

Number of epochs 

In the study conducted by Belay et al. (2022) [3], the number 

of epochs, representing the number of iterations the 

complete dataset goes through during training, plays a 

crucial role in optimizing the model's performance. Through 

experimentation, it was discovered that using too few or too 

many epochs could lead to a significant gap between the 

training and validation errors, indicating suboptimal model 

performance. After conducting numerous experiments, it 

was determined that setting the number of epochs to 100 

resulted in optimal model performance. This carefully 

chosen value allowed the model to undergo sufficient 

iterations through the dataset, facilitating effective learning 

and convergence towards an optimal solution. By selecting 

an appropriate number of epochs, the model was able to 

strike a balance between underfitting and overfitting, 

ultimately leading to improved generalization and 

classification accuracy. 

 

Batch size: In the experiment conducted by Belay et al. 

(2022) [3], the batch size parameter plays a crucial role in 

determining how many inputs can be sent to the network at 

once during training. Given the complexity of the dataset 

and the computational limitations of the computer, breaking 

the input data into smaller groups, or batches, is necessary to 

facilitate efficient model training. To optimize the training 

process and reduce computing time, a batch size of 32 was 

chosen for training the model. This batch size strikes a 

balance between processing efficiency and computational 

resources, allowing the model to efficiently learn from the 

dataset while minimizing training time. By feeding the 

network smaller batches of data sequentially, the model can 

update its parameters more frequently, leading to faster 

convergence and improved training performance. Overall, 

the carefully chosen batch size parameter contributes to the 

successful training and optimization of the deep learning 

model for classifying potato leaf diseases. 

 

Model Evaluation 

Evaluated the trained model on the testing set to assess its 

performance. Evaluation metrics such as accuracy, 

precision, recall, and F1-score to measure the model's 

effectiveness in detecting PEL disease were estimated. 

Confusion matrix was generated to analyse the model's 

performance in terms of true positives, true negatives, false 

positives, and false negatives. Accuracy is the ratio of 

correctly classified samples to the total number of samples, 

providing an overall measure of classification performance. 

It is suitable when observations for each class are balanced. 

Mathematically, accuracy (per cent) is calculated as: 

 

Accuracy (%) =
TP + TN

TP + FP + TN + FN
 ×  100 

 

Precision measures the proportion of true positives among 

all samples classified as positive, offering insights into the 

classifier's ability to correctly identify each class. Precision 

(per cent) is computed as: 

 

Precision (%) =
TP

TP + FP
 ×  100 

 

Recall indicates the ability to identify all relevant instances 

in a dataset and avoid false negatives. It evaluates the 

classifier's performance in capturing all positive instances. 

Recall (per cent) is expressed as: 

 

Recall (%) =
TP

TP + FN
 ×  100 

 

F1 Score is the harmonic mean of precision and recall, 

providing a single metric to assess the classifier's overall 

performance. It is commonly used in binary classification 

tasks but can be extended to multi-class scenarios. F1 Score 

(per cent) is calculated as: 

 

F1 Score (%) = 2 ×
(Precision × Recall)

(Precision +  Recall)
 ×  100 

 

Where 

 True Positive (TP): Number of samples correctly 

identified as Healthy. 

 False Positive (FP): Number of samples incorrectly 

identified as Healthy. 
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 True Negative (TN): Number of samples correctly 

identified as diseased. 

 False Negative (FN): Number of samples incorrectly 

identified as diseased. 

 
Table 2: Summary of hyper parameters used for model training 

 

Parameter Values 

Epoch 100 

Batch Size 32 

Activation Function SoftMax 

Loss Function Categorical Cross-Entropy 

Optimization Algorithm Adam 

Learning Rate 0.001 

 

Results and Discussion 

All of the details of the experiment including the outcomes 

of each experiment and the discussions of these results are 

described in this section. The experimental results are 

presented in the form of figures and tables. 

 

Experimental Setting 

For the classification of potato early and late blight (PEL), 

the experimental setup involved utilizing Python as the 

programming language and Anaconda Jupyter notebook as 

the primary tool for code development. The model was 

trained with specific hyperparameters: the loss function was 

defined as categorical cross-entropy, and the Adam 

optimizer was employed with a learning rate set to 0.001. 

The training process consisted of 100 epochs, with a batch 

size of 32. The experimentation was conducted on a system 

equipped with HLBS Technologies for Tomorrow, running 

Windows 11 Pro on a 64-bit operating system with an x64-

based processor. The system utilized a 12th Gen Intel(R) 

Core (TM) i7-12700 processor operating at 2.10 GHz, with 

16 GB RAM. 

 

Experimental Results 

In this study, our objective was to evaluate the accuracy of a 

Convolutional Neural Network (CNN) classifier in 

distinguishing potato early and late blight (PEL) disease 

from images. The dataset consisted of sample images 

illustrating distinct symptoms of PEL. Early blight 

symptoms included small, dark spots on leaves and stems, 

which gradually expanded and turned yellow, leading to 

lower leaf defoliation and fruit spot rot at the stem. On the 

other hand, late blight symptoms comprised brown spots on 

plant stems, rapidly spreading with white fungal growth in 

humid conditions, ultimately resulting in stem collapse and 

dark brown lesions. Healthy instances displayed no visible 

abnormalities. To bolster the model's robustness, various 

data augmentation techniques such as flipping, rotation, and 

zooming were applied to the sample images from the 

dataset. 

During the training of the CNN model, several 

hyperparameters were fine-tuned, including 100 epochs, a 

batch size of 32, SoftMax activation function, Categorical 

Cross-Entropy loss function, Adam optimization algorithm, 

and a learning rate set at 0.001 (refer to Table 2). Fig. 4A 

illustrates the iterative reduction in both training and 

validation set losses as the model undergoes training. This 

reduction indicates the effective learning process of the 

model, gradually converging towards the global minima. By 

the 40th epoch, both training and validation losses had 

reached their minimum values, subsequently stabilizing 

around 0.2 by the 100th epoch. 

In Fig. 4B, we observe an upward trend in accuracy for both 

the training and validation sets over successive iterations. 

The peak accuracy was attained around the 40th epoch. 

However, beyond this point, a noticeable discrepancy in 

accuracy between the training and validation curves 

emerged. While the training curve reached a peak accuracy 

of 90.00 percent by the 100th epoch, the validation curve 

peaked at the 50th epoch, consistently maintaining an 

accuracy exceeding 90.00 percent in subsequent iterations. 

Notably, our model demonstrated an accuracy of at least 90 

percent in the majority of iterations, resulting in an overall 

classification accuracy of 97.82 percent. Furthermore, when 

tested on a separate test set, the trained model exhibited an 

accuracy of 97.82 percent, correctly predicting PEL disease 

and identifying healthy potato plants. This high level of 

accuracy underscores the efficacy of the CNN classifier in 

accurately diagnosing PEL disease from images, 

highlighting its potential as a valuable tool in agricultural 

disease management. 

The confusion matrix is a specific table that simplifies the 

assessment of whether the model mislabels one class as 

another, providing a visual representation of the model's 

performance. Fig. 6 illustrates the confusion matrix 

comparing the true class against the predicted class in the 

split test set of images for Potato Early and Late Blight 

(PEL) disease. The calculated values describe the 

classification rate for individual classes, with higher color 

density signifying higher accuracy for the individual classes. 

The proposed dataset comprises a total of 922 potato plant 

images, categorized into three classes: Potato Early Blight, 

Potato Healthy, and Potato Late Blight. In the training set, 

there are 400 images each for Potato Early Blight and Potato 

Late Blight, while Potato Healthy comprises 122 images. 

The test set consists of 100 images each for Potato Early 

Blight and Potato Late Blight, with 30 images for Potato 

Healthy. This dataset ensures a balanced distribution of 

samples across the different classes, facilitating effective 

training and evaluation of machine learning models for the 

potato disease classification task. 

Evaluation metrics such as accuracy, precision, recall, and 

F1 score of the developed model on the recognition of PEL 

disease were determined using the confusion matrix. Table 3 

presents the evaluation metrics for the developed PEL 

disease detection using CNN. It is evident from Table 3 that 

the developed model shows an Accuracy of 97.82 percent, 

Precision of 97.83 percent, Recall of 97.82 percent, and F1 

Score of 97.82 percent. These metrics demonstrate the 

effectiveness and reliability of the developed CNN model in 

accurately detecting and classifying Potato Early and Late 

Blight disease. 

 
Table 3: Model evaluation metrics 

 

Evaluation metrics Per cent 

Accuracy 97.82 

Precision 97.83 

Recall 97.82 

F1 Score 97.82 
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Fig. 2: Sample images of potatoe healthy and rust affected leaves from the dataset 

 

 
 

Fig 3: Sample images from the data set after image augmentation 
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 Table 4: Performance Comparison of Different Models for Prediction of Potato Early and Late Blight Diseases 

 

Sl. No. Model name Accuracy precision recall F1 score 

1 Proposed CNN 97.82 97.82 97.82 97.82 

2 Alex Net 43.47 18.9 43.47 26.35 

3 DenseNet121 83 87.8 83 81.81 

4 InceptionV3 95.2 96.53 95.53 96 

5 LeNet-5 93.47 94.17 93.47 93.48 

6 Mobile Net 96.56 99.56 99.56 99.56 

7 ResNet50 96.95 97.53 96.95 97 

8 VGG16 97.69 97.81 97.69 97.71 

9 Efficient Net 13 1.7 13 3 

10 VGG19 43.47 18.9 43.47 26.35 

 

 
 

Fig 4: Model accuracy and loss curves 

 

 
 

Fig 5: Prediction accuracy of the model 
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Table 4 summarizes the performance metrics of various 

models utilized for predicting potato early and late blight 

diseases. Among these models, the proposed CNN model 

achieved the highest accuracy, precision, recall, and F1 

score, with values of 97.82 percent across all metrics. In 

comparison, other models such as AlexNet and VGG19 

demonstrated lower performance, with accuracy scores of 

43.47 percent. DenseNet121, InceptionV3, LeNet-5, 

MobileNet, ResNet50, and VGG16 exhibited comparatively 

better results, achieving accuracy scores ranging from 83 

percent to 97.69 percent. Notably, EfficientNet displayed 

the lowest performance, with an accuracy of 13 percent.  

These metrics offer insights into the effectiveness of 

different models in accurately classifying potato diseases, 

highlighting the superiority of the proposed CNN model in 

terms of overall classification performance. In a recent study 

conducted in 2024, a Convolutional Neural Network (CNN) 

demonstrated an impressive accuracy of 97.82% in 

classifying Potato Early and Late Blight (PEL). This 

achievement highlights the CNN's effectiveness in 

distinguishing between healthy potato leaves and those 

affected by these diseases. Previous research has also 

emphasized the utility of CNNs in potato disease 

classification. For instance, Afzaal et al. (2021) [1] utilized 

AlexNet for Potato Early Blight Detection, achieving an 

accuracy of 93.50%. Similarly, Hassan et al. (2019) 

employed ResNet50 for Potato Late Blight Detection, 

achieving an accuracy of 95.60%. These findings suggest 

that various CNN models can be successfully applied to 

different types of potato diseases, resulting in notable 

accuracy rates. 

Additionally, Zhang et al. (2021) [17] conducted a study on 

potato foliage disease detection using deep learning 

methods, achieving high accuracy rates in classifying 

healthy leaves, early blight, and late blight. Similarly, in a 

recent publication by Lee et al. (2023) [9], a novel approach 

for potato disease severity classification was proposed, 

demonstrating an exceptional accuracy rate of 97.86%. 

These findings underscore the versatility of Convolutional 

Neural Networks (CNNs) in accurately classifying different 

types of potato diseases and highlight the continuous 

advancements in disease detection methodologies. Overall, 

the results from these studies collectively demonstrate the 

efficacy of CNNs in accurately classifying potato diseases 

like Early and Late Blight. Such advancements in machine 

learning techniques hold significant promise for improving 

the efficiency and accuracy of disease diagnosis in 

agriculture, leading to more effective disease management 

strategies. 

 

Proposed CNN 

 

 
 

Fig 6: Confusion matrix for the developed model 
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Conclusion 

This study demonstrates the transformative potential of 

Convolutional Neural Networks (CNNs) in the classification 

of potato leaf diseases. Through the integration of deep 

learning techniques, transfer learning, and data 

augmentation, our developed system showcases high 

accuracy and efficiency in early disease detection within 

potato crops. With rigorous experimentation, our proposed 

CNN model achieved an impressive 97.82% accuracy in 

distinguishing between early and late blight diseases, with 

remarkable precision in identifying healthy leaves versus 

those affected. These findings not only highlight CNN 

effectiveness in agricultural disease management but also 

underscore their broader applicability in addressing food 

security challenges. Future research should focus on refining 

CNN models through transfer learning and the integration of 

additional data sources to enhance adaptability and precision 

in disease classification tasks. Ultimately, the ongoing 

innovation in artificial intelligence holds substantial promise 

for revolutionizing agricultural diagnostics and advancing 

global food security efforts. 
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