Assessment of biochemical parameters (Total serum protein, albumin and globulin) for immunity enhancement in fingerlings of Cyprinus carpio haematopterus

Iqra Nazir, Mohd Danish, Sauliheen Qadri and Tabinda Shabir Yaswi

DOI: https://doi.org/10.33545/26174693.2024.v8.i3Sf.793

Abstract
In the current study, the immunostimulatory effects of chitosan, vitamin C, Curcuma longa, Tinospora cordifolia, Withania somnifera, and Allium sativum on Cyprinus carpio haematopterus fingerlings were assessed. A total of 25 fish per treatment group (T₀, T₁, T₂, and T₃) were randomly assigned to receive fingerlings weighing 30.0±2 g each in duplicate. A combination of rice bran, deoiled mustard oil cake, deoiled soybean cake, and vitamin-mineral mixture was used to create four isoproteinous experimental diets. The phytobiotics, Vitamin C and Chitosan were incorporated into diet. Per kilogramme of feed, diet D₁ included 2.5 g each of garlic, giloy, turmeric, and ashwagandha whereas the diet D₂ had control feed + (2.5 g of each plant) + 25 mg Vitamin C per kg feed. For every kilogram of feed, diet D₃ included 2.5 grams of each plant and 2.5 grams of chitosan. T₀ group fishes were fed with D₀ diet, T₁ with D₁, T₂ with D₂ and T₃ with D₃ @ 5% body weight per day for 122 days. All treatment groups fed the experimental meal showed a significant (p<0.05) increase in the levels of total blood protein, albumin, globulin, A/G ratio, and ALT between the pre-challenged and post-challenged groups. The findings show that the tested phytobiotics, in combination with chitosan and vitamin C, have excellent immunostimulatory effects and have no negative effects on the health of Cyprinus carpio haematopterus in a culture system.

Keywords: Total serum protein, albumin, globulin and immunity

Introduction
Asia contributes about 88.91% to the world fish production according to FAO (2016) [5]. Carps contribute to the majority of aquaculture production worldwide, accounting for over 70% of total productivity. These comprise of Indian major carps i.e, Catla (Catla catla), Rohu (Labeo rohita) and Mrigala (Cirrhinus mrigala); Chinese carps viz. Silver carp (Hypophthalmichthys molitrix), Grass carp (Ctenopharyngodon idella), Common carp (Cyprinus carpio) and Big head carp (Hypophthalmichthys nobilis). Among these Grass carp (Ctenopharyngodon idella) is the highest cultivated carp species contributing about 5.02 mmt, silver carp (Hypophthalmichthys molitrix) ranks 3rd contributing about 4.18 mmt and common carp (Cyprinus carpio) ranks 4th contributing 3.79 mmt to the world aquaculture production (FAO, 2015) [4]. Aquaculture is a significant industry that is growing annually on a global scale. The Indian fisheries is also contributing to the national food security of the country. India ranks second globally in terms of both total fish production and freshwater fish production. In India, fisheries sector provides employment to about 14.49 million people for livelihood security.

Experimental site and climate
The experiment was conducted in the tarai region of Uttarakhand at the Wet Lab of the College of Fisheries, G. B. Pant University of Agriculture and Technology, Pantnagar, Distt. Udham Singh Nagar. The experiment ran from March 1 until June 30, 2018.
Fish collection and maintenance
At the Fish Seed Hatchery, College of Fisheries, G. B. Pant University of Agriculture and Technology, Pantnagar, three hundred fingerlings of healthy, disease-free *Cyprinus carpio haematopterus* were obtained. Their average body weight was 30.00±2.2 g. The fingerlings were kept in indoor captive settings in aerated water for two days while they acclimated in cemented tanks.

Treatment combination
- T0 - D0 Control diet
- T1 - (D1) with control feed + 2.5 g of garlic + 2.5 g of ginlo + 2.5 g of turmeric + 2.5 g of ashwagandha per kg feed
- T2 - (D2) with control feed + (2.5 g of each of four plants) + 25 mg Vitamin C per kg feed
- T3 - Diet (D3) with control feed + (2.5 g of each plant four plants) + 2.5 g Chitosan per kg feed

Feeding was done @ 5% body weight daily. The total quantity of the daily diet was given in two installments, once at 9.00 am and then at 5.00 pm.

Experimental design
The entire experiment was carried out under controlled circumstances at the G. B. Pant University of Agriculture and Technology, Pantnagar, in the Wet Lab of the College of Fisheries. In this experiment, twelve equal-sized FRP tanks with a diameter of 1.07 meters and a depth of 0.82 meters were employed in four groups of three duplicates (4T:R= 12). About 600 liters of water were kept in each tank. Every day, the water was aerated. There were twenty-five Amur carp fingerlings in each tank. Fish in the control treatment received a regular diet (D0). The fishes in treatment T1 were given D1 diet, T2 fishes with D2 diet and T3 fishes with D3 diet. The experiment lasted for 122 days. The growth parameters were analyzed every 15th day.

Biochemical analysis

Total serum protein
Total serum protein was calculated by using following formula

Total serum protein (g/dl) = (Absorbance test / Absorbance of standard) ×6.5

Albumin
The albumin was calculated by using following formula

Albumin (g/dl) = (Absorbance of test / Absorbance of standard) ×4

Globulins
The globulin was calculated by using following formula

Globulins = Total serum protein – Albumin

Albumin-globulin ratio [A/G]
The albumin-globulin ratio was calculated by using following formula

\[
\text{Albumin-globulin ratio} = \frac{\text{Serum albumin (g/dl)}}{\text{Serum globulin (g/dl)}}
\]

Serum Alanine aminotransferase (ALT)
The general formula for converting absorbance change into International Units (IU) of activity is:

\[
\text{Activity of ALT} = A \times 1768\text{ (IU/L)}
\]

Bacterial strain and challenge study
After 102 days of feeding trial, blood samples were collected from treatment and control fish. Suspension of *Aeromonas hydrophila* (designation RTMCX1) was prepared in PBS from freshly grown culture for the challenge experiment from diagnostic bacteriology laboratory, ICAR- DCFR, Bhimtal and maintained at 4 °C in the Department of Aquaculture, G.B Pant University of Agriculture and technology, Pantnagar. Ten fishes from each treatment were challenged intraperitoneally with 10 µl of bacterial suspension (1.5x10⁸ CFU/ml) on day 92. Adequate care was taken to avoid injury when the strain came into contact with *A. hydrophila*. All exposed samples were returned to their respective containers and monitored for their reaction against the injected bacterial strain. Mortality was observed for 10 days. After 102 days of feeding the fish with the D1, D2 and D3 diet, the fishes in the all groups were then fed with control diet for 15 days. After that blood was taken for biochemical analyses.

Statistical analysis
The experimental data were subjected to a two-way analysis of variance (ANOVA) using SPSS (Statistical Package for Social Sciences 2006 version 16.0). The individual mean differences were compared using Duncan's multiple range test. When \(p < 0.05 \) was reached, the values were deemed significant.

Results and Discussion

Total serum protein (TSP)
The observations on total serum proteins in different treatment groups have been depicted in Figure 1. The total serum protein (TSP) of Amur carp at 0th day varied between 1.88±0.53 to 1.99±0.061 g/dl. The total serum protein of Amur carp in pre challenge fishes varied between 2.45±0.006 to 2.76±0.069 g/dl among treatments. In pre challenged group, the maximum value for TSP was recorded as 2.76±0.069 g/dl (T3). In case of post challenged fishes, the value ranged between 4.94±0.09 to 6.92±0.019. Highest TSP was obtained in T3 (6.92±0.019 g/dl). Between T0, T1, T2 and T3 on the 0th day and pre-challenge, as well as between the pre-challenge and post-challenge groups fed experimental diets, the value of TSP differed considerably (\(p < 0.005 \)). Abdel-Tawwab et al. (2010) [1] discovered that when tilapia were fed green tea and subsequently challenged with *Aeromonas hydrophila*, there was an increase in total serum protein, albumin, and globulin. Harikrishnan et al. (2012) [7] also noticed that their was an increase in total serum protein when the fish were fed with 1% or 2% of chitosan diets. The results are in agreement with Siwicki (1989) [13] who found that after feeding carp fish with β-glucan and chitosan their was an increase in the level of total protein content. The values of TSP for the withdrawal period varied between 2.42±0.006 to 2.57±0.169.

Albumin
The observations on albumin in different treatment groups have been depicted in (figure 2). The albumin level of Amur carp at 0th day varied between 0.59±0.051 to 0.63±0.532 g/dl. The albumin level of Amur carp in pre challenged...
fishes varied between 0.82±0.01 to 0.97±0.03 g/dl among treatment. In pre challenged group, the maximum value for albumin was recorded as 0.97±0.03 g/dl (T1). The value for fish that had been post- challenged ranged from 1.66±0.01 to 3.29±0.04 g/dl. The T1 treatment fed with D3 food had the highest albumin level (3.29±0.04 g/dl), which was substantially higher than the T0 control (1.66±0.01 g/dl) (p<0.05). The albumin level at the withdrawal period varied between 0.85±0.01 to 0.99±0.04. The value of albumin varied significantly (p<0.005) between T0, T1, T2 and T3 in 0th day and pre challenge as well as between pre challenge and post challenge group fed with experimental diets. The results support the view of Talpur et al. (2012) [15] who reported an elevation in albumin level (p<0.05) as compared to control when Asian sea bass was fed with garlic supplemented diets and post challenged with Virio harveyi. Fish given Euglena powder showed a substantial change in albumin content at several assays between treatment groups and the control group, according to Das et al. (2009) [3]. Same results were observed when Achyranthes aspera seed were added in the diet of Labeo rohita fingerlings.

Globulin
The profile of globulin in different treatment groups has been presented in (figure3). The globulin level of Amur carp at 0th day varied between 1.29±0.116 to 1.36±0.006 g/dl. The globulin level of Amur carp in pre challenged fishes varied between 1.63±0.02 to 1.79±0.05 g/dl among treatment. In pre challenged group, the maximum value for albumin was recorded as 1.79±0.05 g/dl (T1) followed by 1.76±0.03 g/dl (T2) and lowest in 1.63±0.02 g/dl (T0). In case of post challenged fishes, the value ranged between 3.28±0.05 to 3.63±0.04 g/dl. The best level of globulin was found in treatment T3 (3.63±0.04 g/dl). Fish blood biochemical examination revealed that T3/D3, supplemented with 2.5g of each plant and 2.5g of chitosan, had the highest globulin level. Thus, treatment T3 showed best globulin level which was significantly (p<0.05) high as compared to control T0 as well as other treatments. The globulin level at the withdrawal period varied between 1.66±0.02 to 1.82±0.05. The value of globulin varied significantly (p<0.005) between T0, T1, T2 and T3 in 0th day and pre challenge as well as between pre challenge and post challenge group fed with experimental diet. Similar results were reported by Harikrishnan et al., (2012) [7] who reported elevation in globulin level in Epinephelus bruneus fed with 2% chitin or 1% chitosan diets. Subeena and Navaraj (2012) [14] reported enhanced (p<0.05) serum protein, albumin, globulin content in Mystus keletius fed with herbal diets (Solanum trilobatum and Ocimum sanctum) as compared to the control group. Sahu et al., (2007) [11] reported that Labeo rohita challenged with Aeromonas hydrophila showed significantly (p<0.05) higher globulin level in all the groups in comparison with control when Curcuma longa was added in the diet. After feeding Sparus aurata with levamisole slight increment in globulin level has been reported by Mulero et al. (1998) [10]. The globulin is certainly important for maintaining a good and healthy immune system (Jha et al., 2007) [18].

A/G Ratio
The observations on A/G ratio in different treatment groups have been depicted in (figure 4). The A/G ratio of Amur carp at 0th day varied between 0.45±0.006 to 0.47±0.007. The A/G ratio of Amur carp in pre challenge fishes varied between 0.50±0.007 to 0.55±0.006 among treatments. In pre challenged group, the maximum value for A/G ratio was recorded as 0.55±0.006 (T3) which was significantly higher than T0, T1 and T2. In case of post challenged fishes, the value ranged between 0.50±0.007 to 0.90±0.009. Highest A/G ratio was obtained in T1 (0.90±0.009). The value of A/G ratio varied significantly (p<0.005) between T0, T1, T2 and T3 in 0th day and pre challenge as well as between pre challenge and post challenge group fed with the experimental diet. The value of A/G ratio during the withdrawal period ranged between 0.51±0.006 to 0.54±0.06. Our results support the findings of Sivaram et al. (2004) [12] who reported that the methanolic extracts of herbal plants like O. sanctum, W. somnifera and Myristica fragrans significantly improved the albumin–globulin (A/G) ratio in Epinephelus tauvina challenged with Vibrio harveyi. Chesti et al. (2018) [2] reported that feeding of Allium sativum up to 1.5% in feed to fingerlings of Amur carp, Cyprinus carpio haematopterus, resulted in the significant changes (p<0.05) between the pre challenge and post challenge groups in total serum protein, albumin, globulin, A/G ratio, aspartate aminotransferase (AST), serum alanine aminotransferase (ALT).

Alanine Aminotransferase (ALT)
The observations on alanine aminotransferase (ALT) in different treatment groups have been depicted in (figure5). The ALT of Amur carp at 0th day varied between 28.16±0.41 to 30.85±0.52. The ALT content in pre challenged fishes was in the range of 18.96±0.51 (T3) and 21.75±0.386 (T0). In case of post challenged fishes, the ALT content was recorded as 15.12±0.388 (T3) to 19.63±0.314 (T0). The value of ALT content among 0th day and pre challenged as well as between pre challenged and post challenged fishes varied significantly (p<0.05) between the treatments. The experiment conducted by Fazlolahzadeh et al. (2011) [6] on Rainbow trout, Oncorhynchus smykiss fed with garlic rich diet has resulted in variable values of ALT and there was no significant difference in treatments group as compared to control. The values of ALT after withdrawal period varied between 17.86±0.411 to 20.56±0.501. Increases in fish total serum protein, albumin, and globulin levels are hypothesized to be linked to a more robust innate immune response. An increase in the total leukocyte count, which is a significant source of serum protein production, including lysozyme, complement factors, and bacterialid peptides, could be the cause of the elevated serum protein content (Misra et al., 2006) [9].

Fig 1: Total serum protein (g/dl) in different treatment groups of Cyprinus carpio haematopterus fed with different diet.

~ 473 ~
Summary and Conclusion

The fish in this experiment fed diet D3 showed an increase in total serum protein, albumin, and globulin levels which may be an indication that the supplements incorporated in the diet had resulted in the enhancement of the non-specific immune response of fishes and also the increased levels of albumin may facilitate the transport of more humoral compounds as well as phytobiotic extract along with chitosan in the blood.

References

5. The State of World Fisheries and Aquaculture 2016; FAO, Rome.

12. Sivaram V, Babu MM, Citarasu T, Immanuel G, Murugadass S, Marian MP. Growth and immuneresponse of juvenile greasy groupers (Epinephelus taurus) fed with herbal antibacterial...

