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Abstract 

Plant breeding for crops and ornamentals has grown in importance over the past century. Mendel's 

theories about the inheritance of characteristics established the groundwork for contemporary genetics. 

While chromosomal duplication, mutation breeding, and intra- and interspecific cross-breeding remain 

the mainstays of ornamental plant breeding, plant breeding has advanced dramatically since Mendel's 

day. Advanced accuracy breeding and selection towards more challenging to measure or quantify 

characteristics are now possible because to new genomic techniques. The breeding of ornamental plants 

nowadays is a challenging endeavor with constantly evolving and new obstacles. Collaborations 

between research and industry will be necessary to apply current technology to small-scale crops. 

 
Keywords: Genomics, ornamental plants, interspecific hybridization, molecular markers 

 

Introduction 

It was during the 17th and 18th centuries that plant hunters, botanists or adventurers brought 

new plants to Europe from Asia and the Americas that many of today's popular ornamental 

plants were bred and selected. A new era of plant breeding was initiated by Mendel's 

discovery of how traits are passed from generation to generation. In addition to cross-

breeding and selecting seedlings combining the desired characteristics of both parents, 

ornamental breeding was gradually applied. It became an industrial activity in private 

companies starting in the mid-1800s, resulting in the wide variety of ornamental species and 

cultivars Long et al. Approximately 85,000 to 99,000 ornamental plant species exist 

worldwide, according to (2018) extrapolations. It determines the huge potential of natural 

differences and germplasm in addition to the requirement to conserve genetic resources of 

ornamental plants for breeding and future growth. These facts include the wild relations of 

educated plants. Reasonable benefit-sharing will encourage the development of conservation 

of ornamental plants and will conserve imperative genetic variation for future demands and 

challenges. In recent decades legal organizations as The Convention on Biological Diversity 

(CBD), the Convention on International Trade in Threatened Species of Wild Fauna and 

Flora (CITES) and the Nagoya Protocol were recognized to govern the conservation and 

supportable use of plants. 

 

Intra- and interspecific hybridization 
The majority of ornamental species have high levels of heterozygosity, which generates 
enough variation in F1 populations to allow for selection of new valuable cultivars. Selection 
of novel phenotypes in progenies from controlled intraspecific crosses or even in open 
pollination seedling inhabitants has been, and still is, a successful method in various 
ornamental crops. The limited genetic variation in crossing parents makes it problematic to 
achieve truly advanced breakthroughs. New crossing mixtures between changed species 
(interspecific hybridization) in ornamental crops is therefore the most suitable tool to 
increase variation and represents an excellent way to present new stimulating genes into a 
breeding gene pool (Huylenbroeck et al., 2020) [28]. In rose, only around 8 to 15 species 
contributed to the original germplasm of the modern cultivars (Leus et al., 2018) [29]. In many 
of the most popular ornamental crops, interspecific hybridization forms the substance of the 
present variety. Chrysanthemum appeared from natural hybridizations between dissimilar 
wild species, important to a wide-range cultigens complex (Spaargaren and van Geest, 2018) 
[16].  
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This has led to a significant shift in the produced assortment 

(Van Tuyl et al., 2018) [30]. Asexual propagation kinds it 

likely to propagate new types arising from interspecific 

hybridization even if they are sterile. Further examples are 

described in Marantaceae (Van Huylenbroeck et al, 2018) 
[19] Asclepias sp. (Lewis et al., 2021) [12], Pavonia (Yue and 

Ruter, 2021) [25], and various additional crops. 

In order for successful interspecific or extensive intergeneric 

crossing within a specific genus to occur (Eeckhaut et al., 

2006) [31}, a number of hurdles must be overcome. More and 

more studies are highlighting the importance of these data as 

an important indicator to predict crossing efficiency in 

breeding programs as has been shown for example in 

Geranium (Akbarzadeh et al., 2021) [32], Helleborus 

(Meiners and Winkelmann, 2012) [33] and Hydrangea 

(Granados-Mendoza et al., 2021) [34]. After postzygotic 

fertilization, numerous interspecific crosses exhibit issues 

such lower growth vigor, embryo abortion, endosperm 

development defects, or albinisms. 

 

Chromosome doubling 

In ornamental breeding, polyploidy, or chromosome 

doubling, is still significant. Spontaneous chromosomal 

doubling is often reported in wild populations.  

In ornamental breeding, polyploidy, or chromosome 

doubling, is still significant. Spontaneous chromosomal 

doubling is often reported in wild populations. The somatic 

chromosome number of male or female gametes can 

spontaneously arise and give rise to new polyploids. This 

natural process is called gametic polyploidization. In certain 

instances, when flowers are created under temperature stress 

or after chemical treatment, there is a noticeable increase in 

production (Eeckhaut et al.,2018) [5]. Fertility issues can be 

resolved with unreduced gamete production, particularly 

following interspecific hybridization. Moreover, when 

breeding for triploid progenies, this method likewise 

produces a one-step process. 

 

Somaclonal variation 

The main cause of genetic variability is genetic mutations. 

Unplanned alterations continue to be a significant source of 

novel varieties, particularly for decorative plants lacking 

intentional breeding initiatives. Mutations are the source of 

new introductions in many woody ornamentals (Laere et al., 

2018) [20], such as variegated leaf forms or dwarf growing 

cultivars. The primary factor turning a wild species into a 

cultivated ornamental is mutations in several common 

genera of greenhouse-grown plants, particularly leaf plants. 

Certain examples can be observed in genera likewise 

Aglaonema, Marantha, Monstera, Ficus, Hedera, and many 

more. Plastid mutations give rise to a unique category of 

variegations, which includes leaves with white or yellow 

cell lineages. Extensive research is currently being 

conducted in several Asian countries, including as Malaysia, 

Japan, and South Korea, to improve mutation technology for 

the purpose of developing new types of ornamentals. 

(Ibrahim et al., 2018) [8]. 

In some cases, it is possible to select genotypes resistant to 

biotic or abiotic stress factors (salinity resistance, low 

temperature tolerance) by utilizing somaclonal variation 

through cell cultures. Fungal toxins or filtrates from cultures 

can be used as selecting agents to achieve selection towards 

fungal resistance, as seen in carnations and other 

ornamentals. (Thakur et al., 2002) [35]. Aside from 

morphological modifications, different amounts of ploidy 

have also been noted. Chrysanthemum protoplast 

regenerants exhibit a variety of somaclonal variations, such 

as variations in blossom quantity and size, a decrease in 

plant height, a modified blooming induction time, and 

varied flower kinds and colors. (Eeckhaut et al, 2020) [6]. 

 

Marker assisted breeding and genomics technology  

The sequences of DNA known as molecular markers are 

those that are closely related to and inherited from the 

genomic area of concern. These markers can be used in 

breeding to precisely identify the individuals that carry the 

desired genetic region. Using marker-assisted selection, 

floral characteristics like double flowers, flower color, and 

floral longevity have also been chosen. (Smulders et al., 

2012). MAS can be beneficial for difficult-to-assess 

variables and complicated traits like productivity and 

flowering time that are regulated by several loci or regions.  

Even with their benefits, molecular markers are primarily 

utilized in ornamental breeding for cultivar development of 

economically significant crops including roses, carnations, 

chrysanthemums, petunias, and lily. (Onozaki et al., 2004; 

Von Malek et al., 2000; Su et al., 2019; Tychonievich et al., 

2011; Van Tuyl et al., 2018) [36, 37, 17, 38, 30]. 

The availability of genetic and genomic resources 

determines the use of molecular markers. Big analyses of 

data and next generation sequencing have made reference 

genomes, linkage maps, SSRs, and SNPs for non-model 

crops more accessible and affordable. Numerous ornamental 

crops, including gerbera, hydrangea, impatiens, caladium, 

and others, have benefited from the discovery of genes, 

SNPs, and SSRs thanks to genome reduction techniques like 

transcriptome sequencing and genotyping by sequencing. 

(Bhattarai et al., 2020, Wu et al., 2021; Bhattarai et al., 

2018; Cao et al., 2017) [1, 23, 39, 2].  

Agronomic and horticultural crops are using arrays with a 

few thousand SNPs more frequently due to advancements in 

genome resolution and marker-trait connection. For roses 

and chrysanthemums, these arrays have been established 

by (van Geest et al., 2017; Koning-Boucoiran et al., 2016) 
[18, 10]. These arrays might be utilized for gene or QTL 

identification, quality checks (keeping plants true to type), 

safeguarding plant variety, and analyzing the population 

structure in the germplasm if they were created for other 

ornamental crops.  

 

CRISPR genome editing technology 

CRISPR, or clustered regularly interspaced short 

palindromic repeats, is one of the gene-editing techniques 

that has emerged fastest in recent years for crop 

enhancement. It's an inexpensive, broadly useful, easy-to-

use, and very effective method. Single guide RNA (sgRNA) 

and Cas9 protein combine to form a complex. The complex 

is directed by sgRNA to a specific target site next to the 

protospacer- adjacent motif (PAM), and Cas9 protein 

cleaves the DNA at the targeted location twice (Jinek et al., 

2012) [40]. There are two techniques for repairing the cleaved 

site(s): homology-directed repair (HDR) and non-

homologous end joining (NHEJ) (Symington and Gautier, 

2011) [41]. 

NHEJ, which facilitates the creation of minor insertions or 

deletions, may be applied to the insertion of donor 

sequences, stacks several genes, and can be used to carry out 

functional study of genes. (Lieber, 2010) [42]. By focusing on 
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two particular genes—the flavanone 3′-hydroxylase (F3H)A 

and F3HB coding genes—the CRISPR-Cas9 system, which 

is currently the most widely used CRISPR-Cas system, has 

been successfully used in ornamental plants to engineer 

flower color modifications from purple violet to pale 

purplish pink (Yu et al., 2021) [24]. In I. nil, delayed petal 

senescence has been attained by disruption of the 

EPHEMERAL1 gene (Shibuya et al., 2018) [15]. With 

CRISPR-Cas9, the gene carotenoid cleavage dioxygenase 4 

(CCD4), which prevents the deposition of carotenoids in I. 

nil petals, was deleted, resulting in light yellow petals in the 

mutant lines rather than white petals (Watanabe et al., 2018) 
[22]. A male sterile maternal line in rice has been created 

using CRISPR-Cas9 based gene knockouts in a variety of 

crops (Zhou et al. 2016) [27]. 

Only a small number of decorative crops, including 

petunias, morning glory, chrysanthemums, and orchids, to 

mention a few, have successfully undergone genome 

editing, despite the fact that the list is anticipated to grow 

quickly. (Zhang et al., 2016; Kishi-Kobashi et al., 2017; Kui 

et al., 2017; Watanabe et al., 2017) [26, 9, 11, 21].  

 

Root inducing technology 

It's a useful tool for encouraging dense plant development. It 

has proven possible to make genetically engineered flowers 

in crops such as Dianthus, roses, and chrysanthemums. An 

intriguing substitute transformation approach solely 

employs Rhizobium rhizogenes wild type strains. In many 

dicotyledonous plant species, this group of pathogenic 

bacteria causes the so-called crazy root disease because they 

carry a root-inducing (Ri) plasmid. Natural transformation 

occurs when the bacteria and plants are co-cultivated in a 

lab setting. Since regenerated Ri phenotypic plants are not 

thought to be genetically modified, there are no legal 

restrictions on their commercialization. 2020a; Desmet et al. 

2021. 

These Ri phenotypes can exhibit changes in the morphology 

of the leaves, flowers, blooming period, and roots, in 

addition to the most intriguing characteristic: growth 

behavior. Pre-breeding material is provided by Ri 

technology and used in traditional cross-breeding 

procedures. Effective transformation and regeneration tissue 

culture techniques guarantee the production of several Ri 

lines within a given genus. Among other things, Kalanchoe 

blossfeldiana has been shown to successfully employ the 

technology (Christensen et al., 2008) [43]. 

 

Challenges faced by breeders 

Traditionally, the objective of breeding has been to create 

cultivars with better esthetic qualities, such as improved 

plant habit, leaf features, or flower properties (color, shape, 

aroma, and extended vase life). Increasing output is another 

key objective for cut flowers. Enhanced resistance to pests 

and diseases as well as greater tolerance to abiotic stressors 

are among the new breeding objectives. This is a significant 

task that is anticipated to grow in importance as a breeding 

objective. The output of ornamental plants may also be 

impacted by decreased fertilizer application. Although it has 

historically primarily been a concern for agricultural crops, 

nutrient utilization efficiency is expected to become a 

problem for ornamentals as well. 

It will be extremely difficult to meet all of these medium-

long term targets without the cooperation of industry and 

research, as most breeding programs are carried out by 

small-scale breeding companies that lack the knowledge and 

financial resources to accomplish these goals. Better 

drought-resistant varieties or cultivars—that is, plants that 

require less water input and can withstand more extreme 

weather conditions—are needed for application in gardens 

and public green spaces.  

 

Conclusions 

Breeding ornamental plants has grown to be a significant 

industry. Nowadays, breeding ornamental plants is a 

complex process that calls for far greater flexibility than the 

medium- to long-term goals of the past. It's not always the 

greatest idea to use the newest technology and make large 

expenditures in today's dynamic world, where quick changes 

in the global environment call for creative and adaptable 

solutions. Indeed, the most inventive results in minor crops 

are frequently being produced by ardent "traditional" 

breeders and even amateur plant enthusiasts. Only through 

more active coordination across the various industry and 

research components can this seeming conflict be resolved. 
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