

ISSN Print: 2617-4693 ISSN Online: 2617-4707 NAAS (2024): 5.29 IJABR 2024; 8(3): 320-324 www.biochemjournal.com Received: 02-01-2024 Accepted: 04-02-2024

Ajitsinh B Rajput

Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India

Rahulkumar R Vaid

Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India

Vinodbhai S Chaudhary Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari

Agricultural University, Navsari, Gujarat, India

Corresponding Author: Ajitsinh B Rajput Department of Genetics and Plant Breeding, N. M. College of Agriculture, Navsari Agricultural University, Navsari, Gujarat, India

Heterosis study for yield and yield attributes in sorghum [Sorghum bicolor (L.) Moench]

Ajitsinh B Rajput, Rahulkumar R Vaid and Vinodbhai S Chaudhary

DOI: https://doi.org/10.33545/26174693.2024.v8.i3d.735

Abstract

The present investigation was carried out with a view to study the *per se* performance and magnitude of heterosis using L × T analysis. The experimental material consisted of eight parents (3 females and 5 males) and their resultant fifteen crosses with standard check CSH-25 were evaluated in a randomized block design with three replications. at Main Sorghum Research Station, Navsari Agricultural University, Athwa farm, Surat during *Kharif*-2019. In the present investigation, a variable degree of heterosis was observed for almost all the characters. Total eight promising hybrids *viz.*, GJ-38 × GNJ-1, IS-5476 × ICSV-17044, GJ-42 × GNJ-1, GJ-38 × ICSV-17041, GJ-42 × ICSV-17041, IS-5476 × GNJ-1, GJ-38 × ICSV-17041 and IS-5476 × ICSV-17041 were identified with high heterosis and heterobeltiosis and high *per se* performance for grain yield and significant useful heterosis for some other important traits. From the top-ranking hybrids for grain yield, Cross combinations GJ-38 × GNJ-1, IS-5476 × ICSV-17044, GJ-42 × GNJ-1 and GJ-38 × ICSV-17044 depicted significant standard heterosis for panicle length. This hybrid can be used in further breeding programme for high yield with long panicle.

Keywords: Replication, line × tester, hybrids, heterosis, heterobeltiosis

Introduction

Sorghum [Sorghum bicolor (L.) Moench] is an important cereal crop in India used for dual purpose i.e. feed and fodder. Sorghum is one of the most important cereal crops of the semiarid tropics. Cultivated sorghum is diploid (2n=2x=20) species. Sorghum is often crosspollinated crop and cross-pollination averaging about six to ten percent and may be as high as 30 percent in Sudan grass. The USA is the world's leading producer of sorghum. India is the second largest producer of sorghum in the world. In India, sorghum ranks third in production, next to rice and wheat. Sorghum is cultivated in 4.09 million hectares during 2018-19 with production of 3.47 million tones and productivity of 849 kg per hectares in India (Anon., 2019)^[1]. In Gujarat, sorghum is cultivated in 0.075 million hectares during 2018-19 with production of 0.096 million tones and productivity of 1278 kg per hectares (Anon., 2019)^[1]. Sorghum is nutritionally superior to the other fine cereals such as rice and wheat. Sorghum is a dual-purpose crop; the grain is used for human consumption, while the fodder is utilized as feed to the cattle. Sorghum grain provides a good amount of protein (11%) carbohydrate (72%) and fat (4%). The present study is an attempt to assess the possibilities of commercial exploitation of heterosis and to develop better hybrids and identify elite lines for the further breeding program.

Materials and Methods

The experimental material consisted of eight parents 3 females (GJ-38, GJ-42 and IS-5476) and 5 males (ICSV-17022, ICSV-17041, ICSV-17044, GJ-43 and GNJ-1), and their resultant fifteen crosses with standard check CSH-25 were evaluated in a randomized block design with three replications at the College farm, N. M. College of Agriculture, Navsari Agricultural University, Navsari during summer-2019 and evaluation was carried out during *Kharif*-2019 at the Main Sorghum Research Station, Navsari Agricultural University, Athwa farm, Surat. For recording observation, five competitive plants were randomly selected in each plot in all the three replications and mean observations were taken. Total eleven character studied in this experiment *viz.*, days to 50 percent flowering, days to maturity, plant

height (cm), panicle length (cm), primary branches per panicle, secondary branches per panicle, 100 seeds weight (g), grain yield per plant (g), protein content (%), fe content (ppm) and zn content (ppm). The mean performance of parents, as well as hybrids, were subjected to statistical analysis. Analysis of variance was carried out to test the significance for each character as per the methodology suggested by Panse and Sukhatme (1985)^[5]. Heterobeltiosis (BH) was calculated using the method given by Fonseca and Patterson (1968)^[3]. and Standard heterosis by Meredith and Bridge (1972)^[4].

Results and Discussion

The analysis of variance was performed to test the difference amongst parents and hybrids for all the eleven characters and is presented in Table 1. The results revealed that the mean squares due to genotypes were highly significant for all the characters, indicating the considerable amount of variability present among genotypes for various characters. This validated that the material was appropriate for present study. The mean squares due to genotypes were further partitioned into parents, hybrids and parents vs. hybrids. The differences among parents were highly significant for all characters under investigation except days to 50 percent flowering and days to maturity. The differences among, the hybrids were found significant for all characters. Differences due to parents vs hybrids were found highly significant for all the traits under study except Zn content, it revealed that the performance of hybrids were different from that of parents, there by supporting the presence of substantial amount of heterosis for these traits.

Grain yield per plant is an attribute of economic importance which the breeders attempt to improve by evolving new high yielding hybrids. The results revealed that heterobeltiosis ranged from -0.82 (GJ-38 \times GJ-43) to 92.84 (IS-5476 \times ICSV-17044) percent. Twelve hybrids revealed positive and significant heterobeltiosis. Cross combinations IS-5476 \times ICSV-17044 (92.84%), IS-5476 \times ICSV-17041 (82.56%), GJ-42 \times ICSV-17041 (76.68%), GJ-42 \times ICSV-17044 (71.71%), GJ-42 \times GJ-43 (41.39%) and GJ-38 \times GNJ-1 (34%) emerged as topper. It is interesting to note that, GJ-42 contributed as female parent in three crosses among these top crosses. The variation observed in standard heterosis for grain yield was -13.92 (IS-5476 × GJ-43) to 22.43 (GJ-38 × GNJ-1) percent. Total four hybrids viz., GJ- $38 \times \text{GNJ-1}$ (22.43%), IS-5476 × ICSV-17044 (18.13%), GJ-42 \times GNJ-1 (16.53%) and GJ-38 \times ICSV-17044 (15.99%) exhibited positive and significant standard heterosis in grain yield. From these top cross combinations, GJ-38 and GNJ-1 were involved as parent in two crosses each. Among the heterotic crosses, GJ-38 × GNJ-1 exhibited positive and significant standard heterosis for panicle length, test weight, number of primary branches per panicle, number of secondary branches per panicle, protein and Fe content. Total eight promising hybrids *viz.*, GJ-38 × GNJ-1, IS-5476 × ICSV-17044, GJ-42 × GNJ-1, GJ-38 × ICSV-17044, GJ-42 × ICSV-17041, IS-5476 × GNJ-1, GJ-38 × ICSV-17041 and IS-5476 × ICSV-17041 were identified with high heterosis and heterobeltiosis and high *per se* performance for grain yield and significant useful heterosis for some other important traits.

For days to 50 percent flowering and maturity, negative heterobeltiosis were reported in large number of crosses which pinpointed higher growth rate in a hybrid. Cross combinations GJ-38 × ICSV-17044, GJ-42 × ICSV-17044, GJ-42 \times GJ-43 and IS-5476 \times GJ-43 depicted significant negative standard heterosis for these characters of earliness. While the cross combinations GJ-42 \times GNJ-1 and IS-5476 \times ICSV-17041 depicted significant heterobeltiosis for days to 50 percent flowering and days to maturity, these can be uses for further breeding programme to develop high yielding with early maturity genotypes. From the top-ranking hybrids for grain yield. Cross combination GJ-38 \times ICSV-17044 depicted significant heterobeltiosis and standard heterosis for days to 50 percent flowering and days to maturity in desirable direction coupled with panicle length, test weight, Zn content and primaries and secondary branches, this hybrid can be further evaluated on large scale before commercialization for early maturing, high yielding hybrids with good grain quality. From the top-ranking hybrids for grain yield, Cross combinations GJ-38 \times GNJ-1, IS-5476 \times ICSV-17044, GJ-42 \times GNJ-1 and GJ-38 \times ICSV-17044 depicted significant standard heterosis for panicle length. This hybrid can be used in further breeding programme for high yield with long panicle.

Bold grain is of consumer's preference. From the topranking hybrids for grain yield, Cross combinations GJ-38 × GNJ-1, IS-5476 × ICSV-17044, GJ-42 × GNJ-1, GJ-38 × ICSV-17044, GJ-42 × ICSV-17041 and GJ-38 × ICSV-17041 depicted significant standard heterosis for test weight. This hybrids can be used in further breeding programme to develop high yielding genotypes coupled with bold grain. The hybrid, IS-5476 × GNJ-1 depicted significant standard heterosis for quality parameters *viz*. protein, Fe and Zn content and can be further evaluated and utilize in breeding programme to develop bio-fortified genotypes.

	Mean sum of squares						
Source of variation	d.f.	Days to 50 percent	Days to	Plant height	Panicle	Primary branches	Secondary branches
		flowering	maturity	(cm)	length (cm)	per panicle	per panicle
Replication	2	5.86	6.55	201.52	8.29	55.62	816.90
Genotypes	22	36.26**	54.77**	3669.60**	55.57**	513.81**	69468.34**
Parents	7	1.36	4.28	1411.06**	57.78**	186.32**	23422.29**
Females	2	0.79	0.78	251.80	1.45	128.37*	10972.11*
Males	4	1.54	6.67	2340.77**	39.57**	261.59**	33744.98**
Females vs Males	1	1.78	1.72	10.72	243.25**	1.15	7031.87
Parents vs Hybrids	1	397.23**	809.40**	42777.63**	354.24**	1695.46**	179737.50**
Hybrids	14	27.92**	26.11*	2005.43**	33.13**	593.15**	84614.99**
Females effects	2	1.86	4.88	2871.90**	3.46	96.71	2152.70
Males effects	4	21.75	23.98	5095.28**	63.65	1872.71**	290210.60**
Female x Male effect	8	37.52**	32.49*	243.89	25.28**	77.48	2432.78
Error	44	6.15	11.42	408.99	5.57	38.76	2402.66

Table 1: Analysis of variance for various characters in sorghum

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

Source of variation		Mean sum of squares					
		100 seeds weight (g)	Grain yield per plant (g)	Protein Content (%)	Fe Content (ppm)	Zn Content (ppm)	
Replication	2	0.06	5.18	0.19	1.29	0.18	
Genotypes	22	1.12**	482.33**	8.83**	672.58**	69.67**	
Parents	7	0.32**	218.49**	8.86**	439.25**	149.55**	
Females	2	0.15	270.70**	8.58**	198.81**	64.13**	
Males	4	0.38**	244.32**	5.91**	669.22**	171.53**	
Females vs Males	1	0.45*	10.72	21.20**	0.25	232.47**	
Parents vs Hybrids	1	0.83**	6893.39**	27.71**	6358.01**	0.30	
Hybrids	14	1.55**	156.32**	7.47**	383.14**	34.68**	
Females effects	2	1.07	36.16	2.83	59.81	1.80	
Males effects	4	3.89**	454.02**	15.48	1061.55**	71.18	
Female x Male effect	8	0.49**	37.51	4.62**	124.76**	24.65**	
Error	44	0.06	23.56	0.15	7.98	1.28	

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

Table 2: Estimation of heterosis in F1 hybrid over BP (Better parents) and SC (Standard check) for various characters in sorghum

C. No	Creases	Days to 50 per	Days to maturity		
Sr. 10.	Crosses	BP	SC	BP	SC
1	GJ-38 x ICSV-17022	-6.61*	-3.26	-6.53*	-3.13
2	GJ-38 x ICSV-17041	-6.22*	-4.24	-4.23	-2.51
3	GJ-38 x ICSV-17044	-12.27**	-9.13**	-8.08**	-5.59*
4	GJ-38 x GJ-43	-5.47	-2.55	-5.64*	-2.21
5	GJ-38 x GNJ-1	-1.90	1.62	-3.26	0.26
6	GJ-42 x ICSV-17022	-6.19*	-3.75	-5.68*	-2.82
7	GJ-42 x ICSV-17041	1.44	3.58	-0.30	1.49
8	GJ-42 x ICSV-17044	-11.54**	-9.25**	-9.58**	-7.13**
9	GJ-42 x GJ-43	-10.48**	-8.15*	-8.96**	-6.20*
10	GJ-42 x GNJ-1	-7.15*	-4.73	-6.57*	-3.75
11	IS-5476 x ICSV-17022	-8.61**	-6.68*	-7.19**	-4.67
12	IS-5476 x ICSV-17041	-6.70*	-4.73	-5.13*	-3.44
13	IS-5476 x ICSV-17044	1.44	3.58	-1.50	1.18
14	IS-5476 x GJ-43	-12.92**	-11.08**	-9.58**	-7.13**
15	IS-5476 x GNJ-1	-4.79	-2.78	-4.79	-2.21
	S.E. (±)	2.03	2.03	2.76	2.76

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

Sr. No	Crosses	Plant he	ight (cm)	Panicle length(cm)		
51. NO.	Crosses	BP	SC	BP	SC	
1	GJ-38 x ICSV-17022	55.40**	16.28*	11.86	-9.65	
2	GJ-38 x ICSV-17041	38.29**	8.28	12.46	7.16	
3	GJ-38 x ICSV-17044	32.41**	20.05*	4.36	19.09**	
4	GJ-38 x GJ-43	50.14**	36.12**	-3.82	-5.71	
5	GJ-38 x GNJ-1	19.19*	7.84	14.41*	15.82*	
6	GJ-42 x ICSV-17022	43.91**	7.68	10.36	-10.86	
7	GJ-42 x ICSV-17041	40.33**	9.87	12.02	6.74	
8	GJ-42 x ICSV-17044	35.84**	22.99**	-12.63*	-0.31	
9	GJ-42 x GJ-43	48.77**	34.70**	9.87	7.72	
10	GJ-42 x GNJ-1	14.23	3.35	14.87*	16.28*	
11	IS-5476 x ICSV-17022	33.47**	-0.12	26.95**	2.54	
12	IS-5476 x ICSV-17041	36.14**	6.59	-5.63	-10.08	
13	IS-5476 x ICSV-17044	36.43**	13.46	7.99	23.22**	
14	IS-5476 x GJ-43	40.74**	17.05*	10.43	8.27	
15	IS-5476 x GNJ-1	9.57	-8.87	10.09	11.44	
	S.E. (±)	16.51	16.51	1.93	1.93	

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

Sr. No	Crosses	Number of p	orimary branches	Number of se	Number of secondary branches	
51. INU.	Closses	BP	SC	BP	SC	
1	GJ-38 x ICSV-17022	-1.77	-16.16*	-12.54	-27.44**	
2	GJ-38 x ICSV-17041	11.24	1.67	37.37**	13.96*	
3	GJ-38 x ICSV-17044	21.53**	22.54**	26.22**	12.11*	
4	GJ-38 x GJ-43	-2.82	-17.06*	-29.31**	-41.35**	
5	GJ-38 x GNJ-1	21.38**	17.64*	32.54**	14.23*	
6	GJ-42 x ICSV-17022	-9.44	-10.38	-12.61	-23.87**	
7	GJ-42 x ICSV-17041	4.95	3.86	15.36*	0.49	
8	GJ-42 x ICSV-17044	19.77**	20.77**	29.72**	15.22*	
9	GJ-42 x GJ-43	-2.24	-3.26	-36.04**	-44.28**	
10	GJ-42 x GNJ-1	21.40**	20.13**	31.80**	14.81*	
11	IS-5476 x ICSV-17022	-20.67*	-34.41**	-3.57	-32.38**	
12	IS-5476 x ICSV-17041	9.74	0.30	25.47**	1.02	
13	IS-5476 x ICSV-17044	27.71**	28.77**	30.81**	16.19*	
14	IS-5476 x GJ-43	-0.01	-16.61*	-18.87*	-43.11**	
15	IS-5476 x GNJ-1	23.68**	19.86**	30.25**	12.25*	
	S.E. (±)	5.08	5.08	40.02	40.02	

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

S. No	Crosses	100 Se	eds Weight	Grain yi	Grain yield per plant		
Sr. No.	Crosses	BP	SC	BP	SC		
1	GJ-38 x ICSV-17022	-2.30	-6.88	14.50	-0.28		
2	GJ-38 x ICSV-17041	33.10**	17.29*	24.10**	8.08		
3	GJ-38 x ICSV-17044	9.10	16.15*	33.19**	15.99*		
4	GJ-38 x GJ-43	-1.54	-0.21	-0.82	-13.62*		
5	GJ-38 x GNJ-1	20.02**	16.15*	34.00**	22.43**		
6	GJ-42 x ICSV-17022	-35.74**	-38.75**	23.06**	0.71		
7	GJ-42 x ICSV-17041	25.96**	16.77*	76.68**	9.69		
8	GJ-42 x ICSV-17044	4.50	11.25	71.71**	6.61		
9	GJ-42 x GJ-43	-45.22**	-44.48**	41.39**	-4.46		
10	GJ-42 x GNJ-1	20.56**	16.67*	27.54**	16.53*		
11	IS-5476 x ICSV-17022	-3.17	-7.71	8.03	-11.59		
12	IS-5476 x ICSV-17041	36.68**	7.92	82.56**	8.08		
13	IS-5476 x ICSV-17044	10.86	18.02**	92.84**	18.13**		
14	IS-5476 x GJ-43	-39.98**	-39.17**	27.39**	-13.92*		
15	IS-5476 x GNJ-1	9.58	6.04	18.93*	8.65		
	S.E. (±)	0.20	0.20	3.96	3.96		

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

C. N.	0	Protei	n Content	Fe	Fe Content		
Sr. No.	Crosses	BP	SC	BP	SC		
1	GJ-38 x ICSV-17022	5.64	-15.02**	22.20**	-10.20**		
2	GJ-38 x ICSV-17041	4.91	3.58	16.15**	10.55**		
3	GJ-38 x ICSV-17044	-8.40*	-26.31**	11.00**	-18.43**		
4	GJ-38 x GJ-43	29.78**	4.40	33.41**	-1.96		
5	GJ-38 x GNJ-1	23.77**	15.32**	32.82**	7.06*		
6	GJ-42 x ICSV-17022	8.16*	16.69**	37.39**	-8.63**		
7	GJ-42 x ICSV-17041	11.33**	20.10**	12.07**	6.67*		
8	GJ-42 x ICSV-17044	-20.97**	-14.74**	20.81**	-26.67**		
9	GJ-42 x GJ-43	-10.50**	-3.45	24.35**	-16.87**		
10	GJ-42 x GNJ-1	-2.59	5.09	35.26**	9.02**		
11	IS-5476 x ICSV-17022	-31.71**	-23.21**	37.23**	9.02**		
12	IS-5476 x ICSV-17041	5.58	18.74**	0.53	-4.31		
13	IS-5476 x ICSV-17044	-21.43**	-11.64**	-5.73	-25.10**		
14	IS-5476 x GJ-43	5.58	18.74**	8.09*	-14.12**		
15	IS-5476 x GNJ-1	1.03	13.62**	36.72**	10.20**		
S.E. (±)		0.31	0.31	2.31	2.31		

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

Sr. No	Crosses	Zn Content				
51. 140.	Closses	BP	SC			
1	GJ-38 x ICSV-17022	-4.49	27.45**			
2	GJ-38 x ICSV-17041	-25.83**	-1.03			
3	GJ-38 x ICSV-17044	-12.29**	17.05**			
4	GJ-38 x GJ-43	-34.70**	-12.86**			
5	GJ-38 x GNJ-1	-28.75**	-2.44			
6	GJ-42 x ICSV-17022	2.21	14.46**			
7	GJ-42 x ICSV-17041	-5.54	-4.67			
8	GJ-42 x ICSV-17044	-4.63	-3.75			
9	GJ-42 x GJ-43	5.81	6.79			
10	GJ-42 x GNJ-1	-6.72*	27.71**			
11	IS-5476 x ICSV-17022	-5.97*	22.90**			
12	IS-5476 x ICSV-17041	-30.34**	-8.95*			
13	IS-5476 x ICSV-17044	-23.15**	0.44			
14	IS-5476 x GJ-43	-23.37**	0.16			
15	IS-5476 x GNJ-1	-15.94**	15.10**			
	S.E. (±)	0.92	0.92			

* and ** indicates significance at 5 and 1 percent levels of probability, respectively

Table 3: Best heterotic cross combinations and their performance for grain yield and other characters

Duomising hybrida	Grain yield	Heterosis		Significant heterosis for other traits over		
Promising hybrids	per plant (g)	HB	SH	BP	SC	
GJ-38 x GNJ-1	75.83	34.00**	22.43**	PL,PBP,SBP,TW,GY, PC,FC	PL,PBP,SBP,TW,GY, PC,FC	
IS-5476 x ICSV-17044	73.17	92.84**	18.13**	PBP,SBP,GY	PL,PBP,SBP,TW,GY	
GJ-42 x GNJ-1	72.17	27.54**	16.53*	DFF,DM,PL,PBP,SBP,TW,GY,FC	PL,PBP,SBP,TW,GY, FC,ZC	
GJ-38 x ICSV-17044	71.84	33.19**	15.99*	DFF,DM,PBP,SBP, GY,FC	DFF,DM,PL,PBP,SBP,TW,GY,ZC	
GJ-42 x ICSV-17041	67.94	76.68**	9.69	PBP,TW,GY,PC,FC	TW,PC,FC	
IS-5476 x GNJ-1	67.29	18.93*	8.65	PBP,SBP,FC	PBP,SBP,GY,PC,FC,ZC	
GJ-38 x ICSV-17041	66.94	24.10**	8.08	DFF,SBP,TW,GY,FC	SBP,TW,FC	
IS-5476 x ICSV-17041	66.94	82.56**	8.08	DFF,DM,SBP,TW,GY	PC	

* and ** are significant at 5 percent and 1 percent levels of significance, respectively.

Where,

DFF = Days to 50 percent flowering, DM = Days to maturity, PH = Plant height, PL = Panicle length, PBP = primary branches per panicle, SBP = Secondary branches per panicle, TW = Test weight, GY = Grain yield, PC = Protein content, FC = Fe content, ZC = Zn content, BP = Better parent, HB = Heterobeltiosis, SC = Standard check, SH = Standard heterosis, P1 - Female parent, P2– Maleparent

Conclusion

In conclusion, the analysis of variance conducted on eleven characters demonstrated significant variability among genotypes, validating the suitability of the material for the study. Notably, differences among parents and hybrids were observed, with several hybrids displaying positive and significant heterobeltiosis and standard heterosis for grain yield and other essential traits. Promising hybrids like GJ-38 \times GNJ-1, IS-5476 \times ICSV-17044, and others exhibited desirable characteristics such as early maturity, high yield, long panicle, and bold grain, making them valuable candidates for further breeding programs. Additionally, hybrids like IS-5476 × GNJ-1 showed potential for enhancing quality parameters like protein and mineral content, suggesting their utility in developing bio-fortified genotypes. These findings underscore the potential for breeding superior crop varieties to meet consumer preferences and nutritional needs. Further evaluation and large-scale testing of these hybrids are warranted before commercialization to ensure their efficacy and success in agricultural production.

References

- Annonymous. Season-wise Area, Production and Productivity of Jowar in India, Source: Ministry of Agriculture & Farmers Welfare, Govt. of India. (ON1704) and Past Issues; c2019.
- 2. https://www.indiastat.com/table/agriculturedata/2/jowar greatmillet/17197/7266/data.aspx
- 3. Fonseca S, Bitzer MJ, Papathanasious G, Patterson FL. Coin the term "Heterobeltiosis" Cited by Fonseca S, Patterson, FL; c1968.
- 4. Meredith WR, Bridge RR. Heterosis and gene action in cotton *Gossypium hirsutum*. Crop Science. 1972;12:304-310.
- Panse VG, Sukhatma PV. Statistical method for agriculture workers. (4th edn.) P. and amp; I. Division, ICAR New Delhi 1985.