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Abstract 

Avian colibacillosis, caused by avian pathogenic Escherichia coli (APEC), contributes significantly to 

economic losses within the poultry sector, including mortality, morbidity, and carcass condemnation. 

Various strains of E. coli, categorized into different phylogroups, possess unique genetic and 

phenotypic characteristics that influence their ability to cause disease. Present study was undertaken to 

determine the phylogroups of Escherichia coli isolates isolated from colibacillosis affecting poultry. 

Tissue samples were collected from poultry flocks exhibiting typical colibacillosis lesions like 

pericarditis, perihepatitis, air sacculitis etc. In this study, 50 E. coli isolates, consisting of 45 APEC and 

5 non-APEC isolates, were categorized into phylogroups. The primer pairs yjaA, chuA, arpA, TspE4.C2 

and trpA were utilized for PCR to amplify specific fragments, enabling phylogenetic typing. The results 

classified E. coli isolates (n=50) into B1 (31%), A (28%), B2 (10%), F (6%) and D (4%). Four E. coli 

isolates (8%) could not be classified or were of unknown type, and none of the E. coli isolates fell into 

phylogroup C. Approximately 6% of the E. coli isolates were assigned to either Clade I or Clade II. The 

research showed that phylogroup B1 is prevalent in E. coli found in colibacillosis-infected poultry in 

Haryana. The presence of unidentified phylogroups emphasizes further investigation in the protocols 

and techniques used for phylogrouping. This might suggest possibility for discovering new 

phylogroups. 
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Introduction 

Poultry, particularly chicken, is a widely consumed food globally. The poultry sector in India 

has experienced swift growth since the late 1970s (Muduli et al., 2019) [18]. However, this 

sector faces ongoing risks from a variety of infectious illnesses instigated by bacteria, fungi, 

viruses, and parasites such as colibacillosis, salmonellosis, campylobacteriosis, avian 

influenza, coccidiosis, and more. (Cutler, 2002) [5]. Of these infections, colibacillosis stands 

out as a primary cause of fatalities, resulting in notable economic losses and the rejection of 

carcasses (Huff et al., 2002) [10]. It includes any localized or widespread infection initiated by 

avian pathogenic Escherichia coli (APEC), includes conditions like colisepticemia, chronic 

respiratory disease, coliform cellulitis, venereal colibacillosis, and peritonitis. The bacterium 

APEC contributes significantly to economic losses in the poultry industry due to mortality, 

morbidity, carcass condemnation, and expenses associated with treatment and disinfection 

(Kathayat et al., 2021) [13]. Furthermore, a considerable amount of Escherichia coli strains 

that cause intestinal infections have the potential to transmit to other animals or humans, 

whether through direct or indirect means, thereby posing a notable risk to both animal and 

human well-being (Doyle and Erickson, 2006) [7]. Avian pathogenic E. coli can be 

categorized according to its virulence factors, serotype, phylogenetic group, and resistance to 

drugs. The genetic makeup of E. coli strains often experiences changes like additions, 

deletions, and recombinations in response to natural selection, resulting in divergence 

(Cordoni et al., 2016, O’Boyle et al., 2020) [4, 20]. As a result, E. coli displays a wide array of 

genetic substructures, with at least eight different phylogenetic groups divided into 3 

clusters: clusters containing phylogroups B2, F, and G, another grouping phylogroups A, C, 

B1, and E, and finally phylogroup D in a separate cluster (Clermont et al., 2013, Clermont et 

al., 2019, Gonzalez-Alba et al., 2019, Denamur et al., 2021) [2, 3, 9, 6]. The revised Clermont 

classification expands on the prior categorization of four phylogroups (A, B2, B1, and D).  
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It employs a set of phylogenetic markers viz. yjaA, chuA, 

DNA fragment arpA, TspE4.C2, trpA, and ArpAgpE to 

amplify particular fragments via PCR for target specificity 

(Clermont et al., 2013) [2]. 

 

Materials and Methods 

Samples collection and processing 

The tissue samples were collected from chicken affected 

from colibacillosis from in and around Hisar district. 

Isolation was conducted utilizing conventional techniques 

involving MacConkey agar, brain heart infusion broth, EMB 

agar, Gram's staining, and subsequent confirmation through 

PCR amplification of the PhoA gene (Jhandai et al., 2019) 
[11]. In the study, a combined total of 50 E. coli isolates, 

classified as either APEC (n=45) or non-APEC (n=5), were 

employed for phylogroup examination. 

 

DNA extraction 

The genomic DNA isolation procedure was conducted 

utilizing the boiling/snap chill method (Englen and Kelley, 

2000) [8] with slight modification. In summary, a loopful of 

colonies was suspended in 100μl of TE buffer (pH-8.3) and 

centrifuged at 1000 rpm for 3 minutes. Subsequently, the 

suspensions were boiled at 100 °C for 10-12 minutes, 

promptly cooled on ice, and centrifuged at 10000 rpm for 

10-12 minutes. The resulting supernatant was then 

transferred to clean nuclease-free tubes and stored at -20 °C 

until further utilization. 

 

Phylogenetic Typing of E. coli Isolates using PCR 

All E. coli isolates underwent phylogenetic typing following 

the procedures outlined in the methods described by 

Clermont et al. (2013) [2]. The primer pairs used for 

phylogenetic typing were chuA, yjaA, TspE4.C2, arpA, 

ArpAgpE and trpA (Table 3.1). The PCR procedure was 

conducted in a reaction volume of 25 µl, under the 

following PCR conditions: initial denaturation for 4 min at 

94 ℃ followed by 30 cycles of denaturation for 5 s at 94 ℃; 

annealing for 30 s each at 52 ℃, 60 ℃ and 62 ℃ for group 

E, quadruplex and group C, respectively; and extension for 

30 s at 72 ℃ with a final extension at 72 ℃ for 5 min. The 

PCR products were observed through horizontal gel 

electrophoresis utilizing a 1.5% agarose gel. A 100 bp 

molecular weight marker served as the reference standard 

for size. Following electrophoresis, the gels were stained 

with ethidium bromide, and the bands representing each 

gene were captured digitally using a gel documentation 

system. 

 
Table 1: Primers used in the phylogenetic typing PCR assays 

 

Gene 
Primers 

used 
Primer’s sequence Amplicons size (base pairs) Reference 

Quadruplex 

chuA 
F-5′-ATGGTACCGGACGAACCAAC-3′ 

288 

Clermont et al., 2013 [2] 

R-5′-TGCCGCCAGTACCAAAGACA-3′ 

yjaA 
F-5′-CAAACGTGAAGTGTCAGGAG-3′ 

211 
R-5′-AATGCGTTCCTCAACCTGTG-3′ 

TspE4.C2 
F-5′-CACTATTCGTAAGGTCATCC-3′ 

152 
R-5′-AGTTTATCGCTGCGGGTCGC-3′ 

arpA 
F-5′-AACGCTATTCGCCAGCTTGC-3′ 

400 
R-5′-TCTCCCCATACCGTACGCTA-3′ 

Group E ArpAgpE 
F-5′-GATTCCATCTTGTCAAAATATGCC-3′ 

301 

Lescat et al., 2013 
R-5′-GAAAAGAAAAAGAATTCCCAAGAG-3′ 

Group C trpA 
F-5′-AGTTTTATGCCCAGTGCGAG-3′ 

219 
R-5′-TCTGCGCCGGTCACGCCC-3′ 

 

Results and Discussion 

Write conclusion in 100-120 following 

The classification of all 50 E. coli isolates into phylogenetic 

groups using chuA (288bp), yjaA (211bp), TspE4.C2 

(152bp), arpA (400bp), ArpAgpE and trpA genes primers 

indicated that phylogroup B1 (38%) was dominant group 

followed by A (28%), B2 (10%), unknown/untypable group 

(8%), F, Clade I/II (6% each) and D (4%) (Fig. 4.1). Similar 

results were also obtained during quadreplex PCR (Fig. 4.2). 

In this study, none of the E. coli isolates were categorized 

under phylogroup C. The allocation and prevalence of 

various phylogroups among both APEC and non-APEC 

isolates are outlined in Table 4.1. Notably, significant 

variations in the distribution of virulence traits were 

observed among phylogenetic groups, despite the isolates 

being recovered from similar infection types. Comparable 

findings have been documented by Rodriguez-Siek et al. 

(2005) [21] and Mittal et al. (2022) [17], wherein phylogroup 

A is dominating phylogroup among APEC isolates. 

Phylogroup B2 was significantly associated with non-APEC 

isolates in the present study. Out of the 50 E. coli isolates 

obtained from poultry lesions afflicted with colibacillosis, 

phylogroup B1 was the most common (19 isolates), 

followed by A (14), B2 (5), F (3), F (3) and D (2). In the 

current investigation, none of the isolates fall within 

phylogroups C and E. Most APEC isolates are categorized 

under phylogenetic types A, B1, and D, whereas the 

majority of human ExPEC isolates primarily belong to 

phylogenetic types B2, and to a lesser degree, D 

(Rodriguez-Siek et al., 2005) [21]. Further, the pathogenicity 

is caused by plasmid-mediated pathogenicity-associated 

islands (PAIs) and other mobile and extrachromosomal 

elements. It cannot be accounted for phylogenetic 

categorization, which depends on recognizing specific 

chromosomal markers. The presence of extra-

chromosomally positioned PAIs is a characteristic trait of 

the APEC pathotype and appears to play a crucial role in 

APEC virulence (Tivendale et al., 2004; Johnson et al., 

2008; Skyberg et al., 2008) [23, 12, 22]. However, these isolates 

were obtained from chickens afflicted with perihepatitis and 

other colibacillosis syndromes (Logue et al., 2017) [16]. 

Phylogroups A and B1 have been recognized as closely 

related (Lecointre et al., 1998) [14]. Murase and Ozaki (2022) 
[19] proposed that E. coli isolates classified under 

phylogroups A and B1, derived from colibacillosis lesions, 

exhibit pathogenic potential as indicated by virulence 

genotyping. The findings of this study are different from the 

previous findings by Murase and Ozaki, 2022 [19] who found 
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37 isolates belonged to phylogroup F recovered from 56 

colibacillosis-infected broiler birds. It may be attributed to 

geographical differences and/or any other selection pressure 

due to climatic conditions.  

 

 
 

Fig 1: Phylogenetic typing of E. coli isolates using A) chuA (288bp); B) yjA (211bp); C) TspE4.C2 (152bp); D) arpA (400bp) genes by PCR 

Lane M– 100bp DNA ladder; Lanes 1-2– E. coli isolates; Lanes 3– Positive control; Lane 4– Negative control 
 

 
 

Fig 2: Phylogenetic typing of E. coli isolates using quadruplex phylogroup genes by PCR Lane M– 100bp DNA ladder; Lanes 1-8– E. coli 

isolates with different gene combination; Lane 9– Negative control 
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 Table 2: Association of genes (arpA, chuA, yjA, TspE4.C2) and phylogroups 

 

Phylogroup/Category/Clade Genotype combination Number of isolates 

A (14) 
arpA + chuA - yjA + TspE4.C2 - 9 

arpA + chuA - yjA - TspE4.C2 - 5 

B1 (19) arpA + chuA - yjA - TspE4.C2 + 19 

B2 (5) 
arpA - chuA + yjA + TspE4.C2 + 5 

arpA - chuA + yjA - TspE4.C2 + 0 

Clade I/II (3) arpA - chuA - yjA + TspE4.C2 - 3 

D (2) arpA + chuA + yjA - TspE4.C2 + 2 

F (3) arpA - chuA + yjA - TspE4.C2 - 3 

Unknown (4) arpA + chuA - yjA + TspE4.C2 + 4 

 

Conclusion 

In conclusion, the phylogenetic analysis of 50 E. coli 

isolates using multiple gene markers revealed a diverse 

distribution among phylogroups, with B1 being the most 

prevalent followed by A, B2, and other minor groups. 

Interestingly, no isolates were categorized under phylogroup 

C. These findings align with previous studies, highlighting 

the dominance of phylogroup A among APEC isolates. 

Conversely, phylogroup B2 was notably associated with 

non-APEC strains. Moreover, the distribution of virulence 

traits varied significantly among phylogenetic groups, 

underscoring the complexity of E. coli pathogenicity. 

Despite the absence of phylogroups C and E in this 

investigation, the presence of pathogenicity-associated 

islands (PAIs) suggests a crucial role in APEC virulence. 

Geographical variations and selection pressures may 

account for discrepancies in phylogenetic composition 

observed across studies. Overall, this study enhances our 

understanding of E. coli pathogenesis and underscores the 

importance of molecular typing in epidemiological 

investigations. 
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