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Abstract 

This study examined genotype-environment interaction among 45 rice genotypes during the 2020-21 & 

2021-22 Kharif seasons in Chhattisgarh, India. Genotype main effect plus genotype by environment 

interaction analysis was employed to assess the interplay between genotype and environment, 

highlighting Genotype-environment interaction as the primary source of variation. The first two 

principal components of the GGE bi-plot explained substantial variability. Additive main effect and 

multiplicative interaction analysis identified Environment 1 as the most influential for yield. High-

performing genotypes (G26, G60, G3, G37, G46, G49, G36, G14 and G6) were consistent across 

diverse environments, holding significance for rice breeding programs. These findings are valuable for 

selecting potential candidates for commercial cultivation to enhance both yield and stability across 

varying conditions, facilitating targeted trait improvement and robust rice cultivar development. 

 

Keywords: AMMI analysis, GGE biplot, yield performance, stability assessment, multi-environmental 

trials (mets) 

 

Introduction 

Genotype-environment interaction significantly influences plant growth and traits 

(Annicchiarico 2002) [2]. Understanding this interaction is vital for plant biology and 

adaptation (Karimizadeh et al. 2012) [13]. Multi-environment trials (MET) are essential for 

evaluating genotypes across diverse conditions, revealing genotype-environment (GE) 

interactions (Yan et al. 2007) [23]. Evaluating GE interactions is crucial because it shows how 

genotypes perform differently in various environments, helping select suitable genotypes for 

specific conditions (Ebdon and Gauch, 2002) [4]. This approach enables breeders to tailor 

recommendations for specific needs (Gauch 2006) [7]. A deep understanding of genotype-

environment interaction is vital for assessing adaptability and stability (Ahmadi et al. 2012) 
[1]. Researchers like (Jeberson et al. 2017) [12]. Have explored this field using biometric 

models, following methodologies advocated by (Yan et al. 2007; Goncalves et al. 2020) [23, 

10]. 

 

Materials and Methods 

Table-1 three-year study (2020-2021&2022) assessed 45 rice genotypes in Chhattisgarh 

(ENV1) Raipur, (ENV2) Bilaspur, and (ENV3) Bhatapara regions, developed from a cross 

between parent plants IGKV-R1 (P1) and CGR-52 (P2) to enhance protein content and yield 

performance across diverse environments in genotypes. It employed the Environmental 

Regression (ER) model, AMMI analysis, and GGE biplot analysis as per (Yan et al. 2000) 
[22]. The Multi-Location Trial (MLT) used an Augmented Block Design with standard 

planting densities. Each plot covered one square meter and followed best agricultural 

practices, including weed, insect, and disease management, and recommended fertilizer 

doses (N:P:K,120:60:40). 
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Statistical analysis 

We used statistical analysis (ANOVA) to study differences 

in quantitative traits among genotypes, locations, and 

seasons. We also examined combinations like genotype by 

location, genotype by season, and genotype by location by 

season (genotype by environment). This analysis was 

performed using the R-package for multivariate analysis. To 

understand the interaction between genotype and 

environment (G × E), we conducted a visual multivariate 

stability analysis using GGE biplot and AMMI in R studio, 

which is a simplified version of R statistical software 

developed by the R Core Team. For GGE biplots, we 

utilized the GUI package in R studio, and for AMMI, we 

employed the Agricolae package, which incorporates two 

important concepts the biplot concepts (Gabriel et al. 1971) 
[5]. And (Yan et al. 2007) [23]. As well as the GGE concept 

(Yan et al. 2000) [22]. 

 

AMMI model 

AMMI model analyzes how genotypes and environments 

interact in agriculture. It has additive parts for direct effects 

and a multiplicative component showing how genotypes 

behave in different environments. AMMI model, an 

advanced form of mean regression, effectively understands 

how genotypes and environments interact. Developed by 

(Gollob 1968) [9]. (Mandel 1971) [15]. and (Gabriel 1978) [6]. 

It includes ANOVA, PCA, and regression. This equation 

evaluates crop impacts, aiming for a simple grasp of 

combined effects on yield and productivity in different 

situations. 

 

Model’s equation 

Yij = μ+gi+ej+

𝑛
∑

𝑘 = 𝑛
λkαikγjk+εij 

Where  

 

Yij: Represents the mean yield of genotype (i) in 

Environment (j) 

μ: Signifies the overall mean yield across all genotypes 

and environments 

gi: Denotes the effect of the (i) genotype 

ej: Represents the effect of the j environment  

 
𝑛
∑

𝑘 = 𝑛
λkαikγjk+εij: Capture the multiplicative interaction 

effect 

 

λk: is a singular value αik is a singular value of the (i) 

genotype and γjk is the singular value of the (j) environment 

and εij Represents the experimental error 

 

Results and Discussion 

The table-2 presents an analysis of various sources 

contributing to the variation observed in the dataset. 

Environmental factors (ENV) show statistical significance 

(p-value = 0.000142) with a contribution of 0.85% to the 

total variation. REP (ENV) (Replication within 

Environment) is also statistically significant (p-value = 

0.00001) and contributes 1.42%. The most influential source 

is GEN (Genotype) with a highly significant p-value of 

0.00001 and a substantial contribution of 85.07% to the total 

variation. GEN: ENV (Genotype and Environment 

Interaction) is statistically significant (p-value = 0.006619) 

and contributes 6.39%. Principal Components, PC1 and PC2 

represent mathematical combinations of the original data. 

PC1 is statistically significant (p-value = 0.015857) and 

contributes 3.39% to the total variation. However, PC2 is 

non-significant with a p-value of 1, indicating a limited 

contribution (0.05%) to the total variation. PC2’s weak 

impact stems from minimal influence on dataset variability, 

possibly due to weak correlations or a complex structure. 

Genetic factors dominate outcomes, followed by GEN: ENV 

and PC1, while ENV and REP (ENV) play minor roles. PC2 

lacks significance (Oladosu et al. 2017) [16]. And (Yan & 

Kang, 2007; Dehghani et al., 2006) [23, 3] 

 

Biplot pattern for elucidation of multivariate analysis 

Multi-environment trials (MET) address genotype-

environment (G × E) interactions in crop farming (Oladosu 

et al. 2017) [16]. Genotype (G) and G × E interactions are the 

primary sources of variation in MET (Yan et al. 2000) [22]. 

The biplot technique aids in interpreting MET data, 

revealing the "which-won-where" pattern for GEI, assessing 

genotype stability and mean performance across 

environments, and evaluating test environment 

representativeness and discrimination. A biplot graphically 

represents genotypes and environments on a 2D scale using 

PC1 and PC2 scores. High PC1 values indicate better yield 

potential, while low PC2 values signify stability. Genotypes, 

linked to the encompassing polygon, are positioned away 

from the biplot's center, revealing expected environments, 

and promising genotypes at polygon vertices. 

 

GGE biplot (‘which-won-where’ pattern) 

Figure 1 depicts the GGE biplot pattern for plant yield in 

square meters, where genotype (G) and genotype-

environment interaction (G × E) jointly explain 96.29% of 

yield variation. The biplot segregates environmental 

indicators into two distinct sections, each favoring specific 

genotypes. This emphasizes the significant interplay 

between genotype and environment for a trait. Using 45 rice 

genotypes across three environments, the GGE biplot 

divides into 12 clockwise fan-shaped sections for yield. A 

genotype positioned near a vertex of the polygon indicates 

high performance in a specific environment, signifying 

optimal suitability for those conditions. Such genotypes 

excel in particular environments, showcasing optimal 

performance. This information aids in identifying superior-

performing genotypes, crucial for applications like plant 

breeding and genotypic selection. Genotypes far from the 

polygon's center have weaker performance, indicating 

below-average results. A genotype in the opposite direction 

suggests lower performance in that specific environment 

compared to others. Our result Genotype G26 excelled in 

yield and stability in ENV1, while G5, G37, G1, G137, and 

G82 performed well in both ENV1 and ENV2. G60 and 

G36 exhibited the highest yield and stability in ENV2. In 

ENV3, G6, G49, and G14 excelled in yield with high 

stability, while G21, G40, G19, G42, G46, and G120 

performed best in ENV3. These genotypes (G97, G109, 

G16, G116, G124, G99, G28, G117, G118, G164, and G50) 

are consistently positioned away from the center of the 

polygon and in the opposite direction of the environment. 

This indicates their comparatively lower performance, 
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especially when assessed in the context of specific 

environmental conditions. Our findings, aligned with 

(Hashim et al. 2021) [11]. And (Oladosu et al. 2017) [16]. 

investigate genotype performance across diverse 

environments. Grouping environmental indicators implies 

consistent performance, while scattered indicators indicate 

variations. 

 

GGE biplot pattern of ‘mean vs. stability’ analysis and 

ideal genotype assessment 

Biplot analysis is a vital statistical method for evaluating 

genotypic performance in diverse environments. The AEC 

Abscissa, a vertical line in the biplot, gauges mean 

performance. Genotypes close to this line, especially in the 

arrow's direction, signify superior average performance 

across various environments. The AEC Ordinate, a 

horizontal line, assesses stability, with genotypes near it 

indicating reduced variability in performance across diverse 

conditions (Yan & Rajcan 2002) [20]. Our GGE biplot 

showed that 96.29% of the variation in plant yield per 

square meter resulted from genotype (G) and genotype-

environment interaction (G × E) (Fig. 2). G26 excelled in 

both yield and stability in ENV1, followed by G6, G3, G37, 

G46, G1, and G120. In ENV3, G6, G21, G49, G14, and 

G40, and in ENV2, G5, G60, and G36, exhibited high yields 

but lower stability. G82 and G188 excelled in stability but 

had lower yields in ENV1, while G33, G56, and G137 

(ENV2) and G19, G88, G219, and G42 (ENV3) displayed 

high stability but lower yields. Genotypes G6, G21, G49, 

G14, G40, G5, G60, and G36 yielded well but had low 

stability, evident from their placement away from the AEC 

line. These trends align with prior studies by (Oladosu et al. 

2017; Hashim et al. 2021; Sabri et al. 2020) [16, 11, 17]. 

 

Genotype ranking: best and ideal genotype assessment.  

The genotype ranking biplot (Fig. 3) is a useful tool for 

identifying ideal genotypes. Genotypes like G26, G3, G37, 

and G6 excel as top performers due to their proximity to the 

arrowhead in the circle representing plant yield (Fig. 3). 

Ideal genotypes are typically within the innermost circle, 

closer to the arrow's head at the circular ring's center. In 

cases with no genotype in the inner circle, those closest to it 

are considered ideal (Oladosu et al. 2017) [16]. An ideal 

genotype should show both high mean and stability (Yan & 

Tinker 2006) [20]. it’s often represented by a ring at the head 

of the arrow on the horizontal AEC abscissa axis (Oladosu 

et al. 2017) [16]. Breeders use data from yield performance 

evaluations for genotype selection in multi-environment 

trials (Lin & Binn 2010) [14]. Genotypes close to the ideal 

genotype are promising (Fig. 3): G26 > G6 > G3 > G37 > 

G46 > G21 > G5 > G60 > G1 > G19 > G17 > G36 > G40. 

These results align with (Oladosu et al. 2017) [16]. 

‘Descriminitiveness vs. representativeness’ 

The GGE biplot is vital for selecting ideal test environments 

for superior genotypes and gauging discriminativeness and 

representativeness (Oladosu et al. 2017) [16]. In our study 

(Fig. 4), ENV1, characterized by a short vector for plant 

yield, stood out as an exceptional research location, while 

longer vectors denoted a greater impact in discriminating 

rice genotypes. The ideal test environment features a long 

vector forming a shorter angle with the AEC abscissa line, 

indicating high representativeness and discriminative power, 

as exemplified by ENV1, which excelled in plant yield (Fig. 

5). ENV2 and ENV3 were less suitable for genotype 

selection. Optimal environments depend on genotype 

considerations, balancing representativeness and 

discriminative capacity. Prior studies (Hashim et al. 2021; 

Oladosu et al. 2017) [11, 16]. Also identified yield-based ideal 

environments, facilitating environment selection based on 

genotype-environment correlations approximated by the 

cosine of the angle between AEC and environment vectors. 

 

Ranking environment  

The ideal test environment should be the most 

discriminating (informative) and also most representative of 

the target environment. Figure 5 defines an “ideal test 

environment”, which is the center of the concentric circles. 

It represents the apex of the AEA in the positive direction, 

symbolizing the most representative point with a distance 

from the biplot origin equivalent to the longest vector across 

all environments, thus embodying the highest level of 

informativeness. E1 is closest to this point and is, therefore, 

best, whereas E2 and E3 were the poorest for selecting 

cultivars adapted to the whole region.  

 

Relationships among Test Environments 

Yan's 2002 elucidation [18] highlights that the relationship 

between genotype performance is significantly influenced 

by the angle between vectors representing two test 

environments. An angle less than 90° suggests a positive 

connection, indicating consistent performance across 

environments. An angle of 90° signifies orthogonality and a 

weak association, while an angle exceeding 90° indicates a 

negative connection, revealing an inverse relationship in 

genotype performance between the environments. In our 

study, E1, E2, and E3 showed positive correlations (Figure-

6). All Environments are an acute angle and no right angle 

or obtuse angle was observed. If two environments 

consistently correlate closely across years, one might be 

eliminated without substantial genotype information loss. 

(Lin & Binns 2010) [14]. stated that the effect of the 

environment on genotype is highly influenced by 

unpredictable (e.g., weather) and predictable (e.g., soil) 

factors. The soil is a fixed factor due to its persistence from 

year after year and is noted as a predictable component. 
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 Table 1: Materials 45 rice genotypes cross of (P1) IGKV-R1 and CGR-52 (P2) 

 

S. N Genotype S.N Genotype S.N Genotype 

1 G114 16 G159 31 G120 

2 G109 17 G33 32 G14 

3 G16 18 G42 33 G40 

4 G130 19 G188 34 G17 

5 G50 20 G56 35 G36 

6 G111 21 G133 36 G49 

7 G118 22 G75 37 G1 

8 G124 23 G24 38 G60 

9 G99 24 G219 39 G5 

10 G116 25 G119 40 G21 

11 G87 26 G137 41 G46 

12 G164 27 G82 42 G37 

13 G117 28 G88 43 G3 

14 G28 29 G102 44 G6 

15 G97 30 G19 45 G26 

 
Table 2: Additive main effect and multiplicative interaction (AMMI) analysis of variance for grain yield 

 

.Source of variation Df Sum Sq Mean Sq p-value variation in % 

ENV 2 47064.85 23532.42** 0.000142 0.85 

REP(ENV) 3 78575.47 26191.82** 0.00001 1.42 

GEN 45 4690657.15 104236.82** 0.00001 85.07 

GEN:ENV 88 352455 4005.17** 0.006619 6.39 

PC1 46 186821.63 4061.33** 0.015857 3.39 

PC2 44 2834.63 64.42 1 0.05 

ERROR 131 324898.66 2480.14 
  

Total 359 5514076.48 15359.54 
  

"NS: Not statistically significant, *: Statistically significant at a (p<0.05) 5% significance level, **: 

Statistically significant at a (p<0.01) 1% significance level" 

 

Table 3: Mean performance and their yield comparisons of 45 lines of rice genotypes 
 

Genotype Mean (gm/m2) Genotype Mean(gm/m2) Genotype Mean (gm/m2) 

G114 109.47 G159 315.38 G120 418.19 

G109 118.25 G33 317.06 G14 431.47 

G16 126.59 G42 322.97 G40 428.81 

G130 121.88 G188 321.03 G17 433.41 

G50 141.47 G56 317.66 G36 423.91 

G111 136.06 G133 302.30 G49 448.22 

G118 148.97 G75 317.63 G1 452.91 

G124 145.75 G24 326.91 G60 448.09 

G99 146.75 G219 322.31 G5 454.16 

G116 147.94 G119 318.50 G21 461.44 

G87 152.06 G137 322.06 G46 468.22 

G164 145.15 G82 324.56 G37 471.25 

G117 158.00 G88 325.56 G3 488.69 

G28 161.94 G102 318.56 G6 521.31 

G97 163.72 G19 327.41 G26 532.69 

Descriptive statistics 

Mean 306.81 Min. yield G114(109.47) 
  

SE 8.56 Max. yield G26(532.69) 
  

SD 140.43 
    

CV 45.85 
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Fig 1: “Which-won-where” pattern of GGE biplot polygon view displaying the genotype main effect plus G × E interaction effect of 45 rice 

genotypes in three seasons in three locations for plant yield. The biplots were based on Centering = 2, SVP = 3, Scaling = 0. 

 

 
 

Fig 2: ‘Mean vs. stability’ pattern of GGE biplot illustrating interaction effect of 45 lines of rice Genotype  under three seasons three 

locations for plant yield. The biplots were created based on Centering = 2,  SVP = 1, Scaling = 0 
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Fig 3: The GGE biplot ‘genotypes ranking’ pattern for genotype comparison with ideal genotype showing G +  G × E interaction effect of 

45 lines of rice genotypes. Under three season three locations for plant yield. The biplots were created based on Centering = 2, SVP = 1, 
 

 
 

Fig 4: The GGE biplot ‘Descriminitiveness vs. representativeness’ for genotype comparison with ideal  genotype shows the G + G × E 

interaction effect of 45 lines of rice genotypes. Under three seasons three locations for plant yield. The biplots were created based on 

Centering = 2, SVP = 3, and Scaling = 0. 
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Fig 5: The GGE biplot ‘Environment ranking’ pattern for environment comparison with the ideal environment shows the G + G × E 

interaction effect of 45 lines of rice genotypes under three seasons and three locations for plant yield. The biplots were generated using 

Centering = 2, SVP = 2, and Scaling = 0 as the parameter settings 

 

 
 

Fig 6: The environment-vector view of the GGE biplot shows similarities among test environments under three seasons and three locations 

for plant yield. The biplots were created based on Centering = 2, SVP = 2, Scaling = 0 
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Conclusion 

This study evaluates rice genotypes across diverse 

environments, aiming to identify high-performing 

genotypes. Multi-environment trials (MET) assess 

adaptability and stability. Genotypes fall into three 

categories. Group one includes stable, high-yielding 

genotypes (G26, G3, G46, G120, G17, G46, G1, and G37) 

suitable for ENV1. Group two has genotypes with low 

stability but high yield per square meter (G6, G21, G49, 

G14 in ENV3, and G40, G5, G60, G36 in ENV2). The last 

group consists of genotypes with low yield but high stability 

(G19, G88, G188, G82, G33, G42, G219, and G56), ideal 

for targeted breeding. Some genotypes (G26, G6, G60, G49, 

and G14) performed consistently well, making them prime 

candidates for commercial cultivation in Chhattisgarh. 

These findings suggest the potential for improving rice 

genotypes, with several ideal candidates for cultivation in 

Chhattisgarh. 
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