

ISSN Print: 2617-4693 ISSN Online: 2617-4707 IJABR 2024; SP-8(2): 35-46 www.biochemjournal.com Received: 22-11-2023 Accepted: 29-12-2023

Neeraj Nath Parihar

Ph.D., Department of Seed Science and Technology, MPKV Rahuri, Maharashtra, India

MT Bhingarde

Plant Breeder, AICRN on Potential Crops, Department of Agriculture Botany, Mahatma Phule Krishi Vidyapeeth, Rahuri, Ahmednagar, Maharashtra, India

Corresponding Author: Neeraj Nath Parihar Ph.D., Department of Seed Science and Technology, MPKV Rahuri, Maharashtra, India

Effect of antioxidant foliar application and harvesting stages on seed morphometry of soybean (*Glycine max* (L) Merr.)

Neeraj Nath Parihar and MT Bhingarde

DOI: https://doi.org/10.33545/26174693.2024.v8.i2Sa.523

Abstract

The present study was carried out under the field and laboratory conditions at Post Graduate Institute Research Farm and Seed Technology Research Unit, Department of Agricultural Botany, Mahatma Phule Krishi Vidyapeeth, Rahuri, Dist. Ahmednagar (M.S.) during kharif season 2017 and 2018. Two varieties of soybean viz., V1 - KDS-726, and V2 - KDS-344 were used for the study. The foliar spray with antioxidants viz., T1- Ascorbic acid (100 ppm), T2- Salicylic acid (100 ppm), T3- Humic acid (2000 ppm), T4- Pyridoxine (100 ppm), T5- Salicylic acid (100 ppm) + Ascorbic acid (100 ppm) along with T0- Control. The crop was harvested at three harvesting stages viz., H1- at physiological maturity, H2- 5th days after physiological maturity and H3- 10th days after physiological maturity. The harvested seeds were stored up to 360 days of storage. The field and laboratory experiment was conducted in Split Factorial Design with three replications. seed morphometry characteristics viz., length of seed (7.861 mm), width of seed (6.551 mm), area of seed (36.172 mm²), seed diameter (5.383 mm), seed perimeter (30.356 mm) and seed roundness (93.972) were recorded in variety KDS-726 (V1) irrespective of foliar application of antioxidants and harvesting stages. The interaction of the soybean variety KDS-726 with foliar application of ascorbic acid @100 ppm and harvested at physiological maturity, found superior for seed morphometry characteristics viz., length of seed (7.989 mm), width of seed (6.679 mm), area of seed (38.742 mm²), seed diameter (5.675 mm), seed perimeter (31.501 mm) and seed roundness (95.041) as compared with other interactions.

Keywords: Morphometry, pyridoxine, physiological maturity, perimeter, roundness

Introduction

Soybean (*Glycine max* (L) Merr.) belongs to leguminous family ranked as a top oilseed crop, which provides approximately 50% edible oil of the world (Akparobi, 2009)^[1]. It has been recognized as an ancient crop plant since the origin of agriculture (Jandong *et al.*, 2011)^[8]. Due to the large amount of macro and micro nutrients, it has been considered as a nutritious food for human needs, livestock, industrial and medicinal purposes (Akparobi, 2009)^[1]. Soybean seed consists of 18 to 25% oil and 30 to 50% protein. Protein of soybean seed contains amino acids required for human nutrition and livestock (Raei *et al.*, 2008)^[11]. Salwa *et al.* (2011)^[12] stated that soybean is a crop that compensates shortage of oil and protein of other crops.

Ascorbic acid is a natural product of plants functions play a key role as an antioxidant and an enzyme and apparently plays a role in ameliorating cofactor. It participates in a variety of processes. Ascorbic acid is associated with chloroplasts the oxidative stress of photosynthesis. In addition, AsA has a important roles in cell division and protein modification. One approach for inducing oxidative stress tolerance would to acts as a primary substrate in the cyclic pathway of enzymatic detoxification of hydrogen peroxide (Beltaji, 2008)^[3]. Ascorbic acid application was also alleviated the destructive effects of salinity on osmotic potential, shoot and root dry mass, K+/Na+ ratio and contents of photosynthetic pigments in wheat seedlings under salinity stress was completely affected by exogenous ascorbic acid (Kaydan *et al.*, 2007)^[9].

Humic acid is recognized as dark gold of agriculture. It is a major constituent of humic materials contributed the main essential elements of peat, coal and soil. It is extremely soluble in water and simply absorbed up by a plant as related to fertilizer because it has

frequent vigorous locations which mark it soluble in water. There is a rising attention in the use of humic acid as organic manures or soil tonic humic acids are widely used as fertilizers or plant growth stimulants, although their mechanism of action still remains partially unknown. Humic substances may be applied either directly to the soil or as foliar sprays. Despite both kind of application are commonly used in agricultural practices.

Pyridoxine is a form of vitamin B6. Vitamin B complex act as co-enzymes in the enzymatic reactions by which carbohydrates, fats and proteins are metabolized and involved in photosynthesis and respiration. Pyridoxine (Vitamin B6) is an essential metabolite in all organisms. It can act as a coenzyme for numerous metabolic enzymes and has recently been shown to be a potent antioxidant. It is an essential cofactor for numerous metabolic enzymes including amino acid metabolism and antibiotic biosynthesis and is a requirement for growth and differentiation of some plant species (Dolatabadian and Sanavy, 2008)^[5].

Materials and Methods Methodology

Experiments details

- a) Variety: V1: Phule Sangam (KDS-726), V2: Phule Agrani (KDS-344)
- b) Treatments: 1. (T0) Control, 2. (T1) Ascorbic acid (100 ppm), 3. (T2) Salicylic acid (100 ppm), 4. (T3) Humic acid (2000 ppm), 5. (T4) Pyridoxine (100 ppm), 6. (T5) Salicylic acid (100 ppm) + Ascorbic acid (100 ppm)

Harvesting stages: H1) At physiological maturity H2) 5 days after physiological maturity, H3) 10 days after physiological maturity

c) **Design:** Field and Lab:- Split Factorial, d) Replication: 3, e) Season: Kharif - 2017 and Kharif - 2018, f) Spacing: 30 x 10 cm, g) Plot size: Gross: 3.50 x 1.80 m^2 , Net: 3.30 x 1.50 m^2 , h) Seed;- For the present study, seeds of soybean varieties V1- KDS-726 and V2- KDS-344 were used. The seeds of two varieties were collected from Agricultural Research Station, Digraj, Dist.Sangali, MPKV, Rahuri. Land Preparation;- The soil of experimental plot selected for present studies was medium black with fairly uniform fertility. The experimental plot was ploughed followed by two harrowing. The stubbles, weeds and debris of previous crop was collected and removed from the experimental plot. Thus, plot was kept ready for sowing. Manures and Fertilizer Application;- The recommended package of practices by MPKV, Rahuri was followed to conduct the experiment. The fertilizer dose of 50 kg N and 75 kg P2O5 per hectare was applied in the form of diammonium phosphate (DAP), where in 45 kg of K per hectare was applied in the form of Muriate of potash (MOP) at the time of sowing. Experimental Layout;-The two experiments were laid out during kharif, 2017 and Kharif, 2018 at PGI Farm, MPKV, Rahuri in a Split Factorial design with three replications. Sowing; - The seeds of soybean variety V1-KDS-726 and V2- KDS-344 were sown by hand dibbling at 30 x 10 cm spacing in the plots. Intercultural Operations and Aftercare;- Two hand weeding were done at 15 and 35 days after sowing along with inter-cultivation and apt plant protection measures. *Foliar Application;*- Application of foliar spray of antioxidants was given at flower initiation stage and 2nd spray at 10 days after 1st spray.

Observation Recorded: Seed Morphometry (Image analysis);- The seed morphological characters were observed on Image Pro Vision Technology (Image Analyzer) are as below:

- 1 Length of seed (mm),
- 2 Width of seed (mm),
- 3 Area of seed (mm²),
- 4 Seed Diameter (mm)
- 5 Seed perimeter (mm),
- 6 Seed roundness

The observations were taken from the seeds obtained at different harvesting stages. (H1) At physiological maturity, (H2) 5 days after physiological maturity and (H3) 10 days after physiological maturity.

Results and Discussion Seed Morphometry (Image Analysis)

Length of Seed (mm): The data of length of seed (mm) as influenced by harvesting stages, varieties, foliar spray treatments and their interactions are presented in Table 1.

Effect of harvesting stages: From the Table 4, it was seen that the length of seed (mm) showed significant difference due to harvesting stages. The higher length of seed (mm) 7.451,7.447 and 7.449 (mm) was recorded at physiological maturity and the lower length of seed (mm) 6.979, 6.976 and 6.978 (mm) was recorded at 10 days after physiological maturity during the year 2017, 2018 and on pooled basis, respectively, irrespective of varieties and foliar spray treatments. 1.2 Effect of varieties;- From the data, it was found that length of seed (mm) indicated significant differences due to the soybean varieties KDS-726 (V1) and KDS-344 (V2) during both years and on pooled basis (Table 1). The variety KDS-726 (V1) had significantly higher length of seed (mm) as 7.863, 7.859 and 7.861 (mm) than that of KDS-344 (V2) 6.593, 6.590 and 6.591 (mm) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and foliar spray treatments.1.3 Effect of foliar spray treatments;- The data regarding length of seed (mm) showed significant differences due to foliar spray treatment during both years and on pooled basis irrespective of harvesting stages and varieties. From the data, it was observed that the foliar spray with ascorbic acid (100 ppm) (T1) recorded maximum 7.302, 7.299 and 7.300 (mm) length of seed followed by pyridoxine (100 ppm) (T4) 7.288, 7.284 and 7.286 (mm) length of seed during the year 2017, 2018 and on pooled basis, respectively. While minimum length of seed (mm) was recorded in control 7.117, 7.114 and 7.116 (mm) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and varieties.

Effect of three factor interaction;- a) Interaction effect of harvesting stages, varieties and foliar spray treatments;-From the data, it was found that the interaction effects of harvesting stages, varieties and foliar spray treatments on length of seed (mm) of soybean was found significant during both years and on pooled basis are presented in Table 1. In the interaction effect of harvesting stages, varieties and foliar spray treatments, maximum length of seed (mm) was recorded in interaction of H1V1T1 as 7.990, 7.987 and 7.989 (mm) followed by interaction H1V1T4 as 7.978, 7.975 and 7.977 (mm) during the year 2017, 2018 and on pooled basis, respectively. The minimum length of seed (mm) was recorded in interaction H3V2T0 as 6.143, 6.140 and 6.141 (mm) during the year 2017, 2018 and on pooled basis, respectively. Bademuqiqige *et al.* (2018) ^[2] found in

Seriphidium transiliense harvest time had an influenced on the seed morphology, such as seed size, seed shape, seed length, seed width and seed moisture content, and these morphological characteristics maybe correlated with seed germination Teng *et al.* (2009) ^[14] in soybean, Canavar and Kaynak (2013) ^[4] in peanut, Havstad and Aamlid (2013) ^[6] in *Phleum pratense*, Jacobsen and Christiansen (2016) ^[7] in quinoa and Sintim *et al.* (2016) ^[13] in oil seed camelina.

Table 1: Effect of harvesting stages (H), varieties (V), foliar spray treatments (T) and their interactions on length of seed (mm)

			Length of seed (mm)			
Harvesting stages	(H)	2017	2018	Pooled		
H ₁ -At physiological n	naturity	7.451	7.447	7.449		
H ₂ - 5 days after physiologi	cal maturity	7.253	7.250	7.251		
H ₃ - 10 days after physiolog	ical maturity	6.979	6.976	6.978		
SE (m) ±		0.017	0.015	0.019		
CD at 5%	CD at 5%					
	Varieties (V)					
V ₁ -KDS-726 (Phule S		7.863	7.859	7.861		
V ₂ -KDS-344 (Phule A	Agrani)	6.593	6.590	6.591		
SE (m) ±		0.0024	0.0028	0.0032		
CD at 5%		0.0068	0.0079	0.0089		
	Treatments (T)					
T ₀ -Control		7.117	7.114	7.116		
T ₁ -Ascorbic acid (10		7.302	7.299	7.300		
T ₂ -Salicylic acid (100		7.136	7.132	7.134		
T ₃ -Humic acid (2000		7.253	7.250	7.251		
T ₄ -Pyridoxine (100		7.288	7.284	7.286		
T ₅ -Salicylic acid (100 ppm) + Asco	orbic acid (100 ppm)	7.271	7.268	7.270		
SE (m) ±		0.004	0.005	0.006		
CD at 5%		0.012	0.014	0.015		
Harvesting stag	ges \times Variety interaction (H \times V)					
H ₁ V ₁		7.950	7.946	7.948		
H_1V_2		6.952	6.948	6.950		
H_2V_1		7.858	7.855	7.857		
H_2V_2		6.648	6.645	6.646		
H_3V_1		7.780	7.777	7.778		
H ₃ V ₂		6.179	6.176	6.178		
SE (m) ±		0.004	0.005	0.006		
CD at 5%		0.012	0.014	0.015		
Harvesting stage	es \times Treatment interaction (H \times T					
H ₁ T ₀		7.402	7.398	7.400		
H ₁ T ₁		7.496	7.493	7.495		
H ₁ T ₂		7.423	7.418	7.421		
H ₁ T ₃		7.441	7.438	7.439		
H ₁ T ₄		7.483	7.480	7.482		
H ₁ T ₅		7.460	7.457	7.458		
H ₂ T ₀		7.008	7.005	7.007		
H_2T_1		7.398	7.395	7.397		
H ₂ T ₂		7.024	7.021	7.022		
H2T3		7.344	7.341	7.342		
H2T4		7.380	7.377	7.379		
H2T5		7.364	7.361	7.362		
H ₃ T ₀		6.942	6.939	6.940		
H ₃ T ₁		7.011	7.008	7.010		
H ₃ T ₂		6.960	6.957	6.959		
H ₃ T ₃	H ₃ T ₃			6.973		
H ₃ T ₄				6.998		
H ₃ T ₅		6.990 0.007	6.987	6.988		
SE (m) ±	SE (m) ±			0.010		
CD at 5%		0.020	0.024	0.027		
· · · ·	Treatment interaction (V×T)					
V ₁ T ₀	7.818	7.815	7.8	817		
V ₁ T ₁	7.902	7.899		901		
V ₁ T ₂	7.838	7.835		337		
V ₁ T ₃	7.854	7.851	7.853			
V_1T_4	7.889	7.886	7.8	388		

V1T5	7.873	7.870	7.872
V2T0	6.416	6.413	6.415
V ₂ T ₁	6.702	6.698	6.700
V_2T_2	6.433	6.430	6.431
V_2T_3	6.652	6.648	6.650
V_2T_4	6.686	6.682	6.684
V_2T_5	6.669	6.666	6.667
SE (m) ±	0.0059	0.0068	0.0078
CD at 5%	0.0166	0.0193	0.0218
Harvesting stages × Vari	iety × Treatment interaction	(H×V×T)	
$H_1V_1T_0$	7.906	7.902	7.904
$H_1V_1T_1$	7.990	7.987	7.989
$H_1V_1T_2$	7.925	7.919	7.922
$H_1V_1T_3$	7.941	7.937	7.939
$H_1V_1T_4$	7.978	7.975	7.977
$H_1V_1T_5$	7.961	7.957	7.959
$H_1V_2T_0$	6.898	6.895	6.897
$H_1V_2T_1$	7.002	6.999	7.001
$H_1V_2T_2$	6.921	6.917	6.919
$H_1V_2T_3$	6.941	6.938	6.940
$H_1V_2T_4$	6.988	6.985	6.987
$H_1V_2T_5$	6.960	6.956	6.958
$H_1 V_2 I_3$ $H_2 V_1 T_0$	7.808	7.805	7.807
$H_2 V_1 T_1$	7.905	7.902	7.904
$H_2 V_1 T_2$	7.828	7.825	7.827
$H_2 V_1 T_2$ $H_2 V_1 T_3$	7.847	7.844	7.846
$H_2 V_1 T_3$ $H_2 V_1 T_4$	7.891	7.888	7.890
$H_2 V_1 T_4$ $H_2 V_1 T_5$	7.870	7.867	7.869
$\frac{112\sqrt{113}}{H_2V_1T_0}$	6.208	6.205	6.207
$H_2 V_1 T_0$ $H_2 V_1 T_1$	6.891	6.888	6.890
$H_2 V_1 T_1$ $H_2 V_2 T_2$	6.219	6.216	6.218
$\frac{H_2 V_2 T_2}{H_2 V_2 T_3}$	6.840	6.837	6.839
$\frac{112}{V_2T_3}$	6.869	6.866	6.868
$\frac{112 \vee 214}{H_2 \vee 2T_5}$	6.857	6.854	6.856
$\frac{H_2 V_2 I_5}{H_3 V_1 T_0}$	7.741	7.738	7.740
$\frac{\mathbf{H}_{3}\mathbf{v}_{1}\mathbf{I}_{0}}{\mathbf{H}_{3}\mathbf{V}_{1}\mathbf{T}_{1}}$	7.811	7.808	7.810
	7.762	7.759	7.761
H ₃ V ₁ T ₂ H ₃ V ₁ T ₃	7.775	7.772	7.774
$H_3V_1T_4$	7.799	7.796	7.798
H ₃ V ₁ T ₅	7.789	7.786	7.788
H ₃ V ₂ T ₀	6.143	6.140	6.141
H ₃ V ₂ T ₁	6.211	6.208	6.210
H ₃ V ₂ T ₂	6.158	6.155	6.157
H ₃ V ₂ T ₃	6.174	6.171	6.172
$H_3V_2T_4$	6.199	6.196	6.198
H ₃ V ₂ T ₅	6.190	6.187	6.189
SE (m) ±	0.010	0.012	0.014
CD at 5%	0.029	0.033	0.038

Width of Seed (mm): The data of width of seed (mm) as influenced by harvesting stages, varieties, foliar spray treatments and their interactions are presented in Table 2.

Effect of harvesting stages: From the Table 2, it was seen that the width of seed (mm) showed significant difference due to harvesting stages. The higher width of seed (mm) 6.141, 6.137 and 6.139 (mm) was recorded at physiological maturity and the lower width of seed (mm) 5.669, 5.666 and 5.668 (mm) was recorded at 10 days after physiological maturity during the year 2017, 2018 and on pooled basis, respectively, irrespective of varieties and foliar spray treatments.

Effect of varieties: From the data, it was found that width of seed (mm) indicated significant differences due to the soybean varieties KDS-726 (V1) and KDS-344 (V2) during both years and on pooled basis (Table 2). The variety KDS-

726 (V1) had significantly higher width of seed (mm) as 6.553, 6.549 and 6.551 (mm) than that of KDS-344 (V2) 5.283, 5.280 and 5.281 (mm) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and foliar spray treatments.

Effect of foliar spray treatments: The data regarding width of seed (mm) showed significant differences due to foliar spray treatment during both years and on pooled basis irrespective of harvesting stages and varieties. From the data, it was observed that the foliar spray with ascorbic acid (100 ppm) (T1) recorded maximum 5.992, 5.989 and 5.990 (mm) width of seed followed by pyridoxine (100 ppm) (T4) 5.978, 5.974 and 5.976 (mm) width of seed during the year 2017, 2018 and on pooled basis, respectively. While minimum width of seed (mm) was recorded in control 5.807, 5.804 and 5.806 (mm) during the year 2017, 2018 and on pooled basis, respective of harvesting and on pooled basis, respectively, irrespective of harvesting and on pooled basis, respectively, irrespective of harvesting basis, respectively

stages and varieties. Effect of three factor interaction;- a) Interaction effect of harvesting stages, varieties and foliar spray treatments;- From the data, it was found that the interaction effects of harvesting stages, varieties and foliar spray treatments on width of seed (mm) of soybean was found significant during both years and on pooled basis are presented in Table 2. In the interactions of harvesting stages, varieties and foliar spray treatments on width of seed (mm) was recorded in interaction of H1V1T1 as 6.680, 6.677 and 6.679 (mm) followed by interaction H1V1T4 as 6.668, 6.665 and 6.667 (mm) during the year 2017, 2018 and on pooled basis, respectively. While minimum width of seed (mm) was recorded in interaction H3V2T0 as 4.833, 4.830 and 4.831 (mm) during the year 2017, 2018 and on pooled basis, respectively.

Area of Seed (mm²): The data of area of seed (mm²) as influenced by harvesting stages, varieties, foliar spray treatments and their interactions are presented in Table 2.

Effect of harvesting stages: From the Table 2, it was seen that the area of seed (mm²) showed significant difference due to harvesting stages. The higher area of seed (mm²) 35.446, 35.443 and 35.445 (mm²) was recorded at physiological maturity (H1) and the lower area of seed (mm²) 33.753, 33.750 and 33.751 (mm²) was recorded at 10 days after physiological maturity (H3) during the year 2017, 2018 and on pooled basis, respectively, irrespective of varieties and foliar spray treatments. 3.2 Effect of varieties;-From the data, it was found that area of seed (mm2) indicated significant differences due to the soybean varieties KDS-726 (V1) and KDS-344 (V2) during both years and on pooled basis (Table 2). The variety KDS-726 (V1) had significantly higher area of seed (mm²) as 36.17, 36.17 and 36.172 (mm²) than that of KDS-344 (V2) 32.736, 32.733 and 32.734 (mm²) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and foliar spray treatments.

Effect of foliar spray treatments: The data regarding area of seed (mm²) showed significant differences due to foliar spray treatment during both years and on pooled basis irrespective of harvesting stages and varieties. From the data, it was observed that the foliar spray with ascorbic acid (100 ppm) (T1) recorded maximum 34.883, 34.880 and 34.882 (mm²) area of seed followed by pyridoxine (100 ppm) (T4) 34.681, 34.678 and 34.679 (mm2) area of seed during the year 2017, 2018 and on pooled basis, respectively. While minimum area of seed (mm²) was recorded in control 33.928, 33.925 and 33.927 (mm²) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and varieties.

Effect of three factor interaction;- a) Interaction effect of harvesting stages, varieties and foliar spray treatments

From the data, it was found that the interaction effects of harvesting stages, varieties and foliar spray treatments on area of seed (mm²) of soybean was found significant during both years and on pooled basis are presented in Table 2. In the interactions of harvesting stages, varieties and foliar spray treatments, maximum area of seed (mm²) was recorded in interaction of H1V1T1 as 38.744, 38.741 and 38.743 (mm²) followed by interaction H1V1T4 as 38.073, 38.070 and 38.072 (mm²) during the year 2017, 2018 and on pooled basis, respectively. The minimum area of seed (mm²) was recorded in interaction H3V2T0 as 31.708, 31.705 and 31.707 (mm²) during the year 2017, 2018 and on pooled basis, respectively. This might be due to soybean seed harvested at physiological maturity had maximum moisture and dry matter content. Nichal et al. (2018) [10] in soybean found that seed seed size were maximum at physiological maturity stage because all seed components has attained maximum values at physiological maturity stage and decreased at subsequent stages of harvesting after physiological maturity. Hence, it is advisable to harvest the soybean crop at physiological maturity stage.

 Table 2: Effect of harvesting stages (H), varieties (V), foliar spray treatments (T) and their interactions on width of seed (mm) and area of seed (mm²)

	Width	of seed	(mm)	Area of seed (mm ²)		
Harvesting stages (H)	2017	2018	Pooled	2017	2018	Pooled
H ₁ -At physiological maturity	6.141	6.137	6.139	35.446	35.443	35.445
H ₂ - 5 days after physiological maturity	5.943	5.940	5.941	34.165	34.162	34.163
H ₃ - 10 days after physiological maturity	5.669	5.666	5.668	33.753	33.750	33.751
SE (m) ±	0.021	0.020	0.026	0.047	0.026	0.046
CD at 5%	0.084	0.080	0.083	0.184	0.100	0.150
Variet	ties(V)					
V ₁ -KDS-726 (Phule Sangam)	6.553	6.549	6.551	36.173	36.170	36.172
V ₂ -KDS-344 (Phule Agrani)	5.283	5.280	5.281	32.736	32.733	32.734
SE (m) ±	0.003	0.003	0.004	0.018	0.012	0.019
CD at 5%	0.008	0.009	0.011	0.050	0.035	0.052
Treatm	ents (T)					
T ₀ -Control	5.807	5.804	5.806	33.928	33.925	33.927
T ₁ -Ascorbic acid (100 ppm)	5.992	5.989	5.990	34.883	34.880	34.882
T ₂ -Salicylic acid (100 ppm)	5.826	5.822	5.824	34.271	34.268	34.269
T ₃ -Humic acid (2000 ppm)	5.943	5.940	5.941	34.429	34.426	34.428
T ₄ -Pyridoxine (100 ppm)	5.978	5.974	5.976	34.681	34.678	34.679
T ₅ -Salicylic acid (100 ppm) + Ascorbic acid (100 ppm)	5.961	5.958	5.960	34.535	34.532	34.534
SE (m) ±	0.005	0.006	0.007	0.030	0.021	0.032
CD at 5%	0.015	0.016	0.019	0.086	0.060	0.090
Harvesting stages × Va	riety interact	tion (H×'	V)			
H_1V_1	6.640	6.636	6.638	37.499	37.496	37.497
H_1V_2	5.642	5.638	5.640	33.394	33.391	33.392

	H_2V_1		6.548	6.545	6.547	35.710	35.707	35.708
	H_2V_1 H_2V_2		5.338	5.335	5.336	32.619	32.616	32.618
	$H_2 V_2$ $H_3 V_1$		6.470	6.467	6.468	35.311	35.308	35.310
	H ₃ V ₂		4.869	4.866	4.868	32.195	32.192	32.193
	SE (m) ±		0.005	0.006	0.007	0.030	0.021	0.032
	CD at 5%		0.015	0.016	0.019	0.086	0.060	0.090
		ing stages × Tre				24 4 29	24 426	24 407
	$\frac{H_1T_0}{H_1T_1}$		6.092 6.186	6.088 6.183	6.090 6.185	34.428 36.205	34.426 36.202	34.427 36.204
	H ₁ T ₂			6.108	6.111	35.157	35.153	35.155
	H112 H1T3			6.128	6.129	35.471	35.469	35.470
	H_1T_4		6.173	6.170	6.172	35.846	35.843	35.844
	H ₁ T ₅		6.150	6.147	6.148	35.571	35.567	35.569
	H ₂ T ₀		5.698	5.695	5.697	33.952	33.949	33.950
	$\frac{H_2T_1}{H_2T_2}$		6.088 5.714	6.085 5.711	6.087 5.712	34.419 34.013	34.416 34.010	34.418 34.012
	H_2T_2 H_2T_3		6.034	6.031	6.032	34.084	34.081	34.082
	H ₂ T ₄		6.070	6.067	6.069	34.316	34.313	34.314
	H ₂ T ₅		6.054	6.051	6.052	34.204	34.201	34.202
	H ₃ T ₀		5.632	5.629	5.630	33.405	33.402	33.403
	H ₃ T ₁		5.701	5.698 5.647	5.700 5.649	34.025 33.643	34.022	34.023 33.642
	H ₃ T ₂ H ₃ T ₃		5.650 5.665	5.647	5.649	33.643	33.640 33.730	33.642
	H3T4		5.689	5.686	5.688	33.880	33.877	33.879
	H3T5		5.680	5.677	5.678	33.832	33.829	33.830
	SE (m) ±		0.009	0.010	0.012	0.053	0.037	0.056
	CD at 5%		0.025	0.028	0.033	0.149	0.105	0.156
ИТ		$riety \times Treatme$			20	25 529		25.520
$\frac{V_1T_0}{V_1T_1}$	6.508 6.592	6.505 6.589	6.507 6.591	35.53 36.74		35.528 36.739		35.529 36.740
V_1T_1 V_1T_2	6.528	6.525	6.527	35.96		35.956		35.958
V ₁ T ₃	6.544	6.541	6.543	36.13		36.129		36.131
V_1T_4	6.579	6.576	6.578	36.44		36.439		36.441
V1T5	6.563	6.560	6.562	36.23		36.231		36.233
V ₂ T ₀	5.106	5.103	5.105	32.32		32.323		32.325
V ₂ T ₁ V ₂ T ₂	5.392 5.123	5.388 5.120	5.390 5.121	33.02 32.58		33.022 32.579		33.023 32.581
V2T2 V2T3	5.342	5.338	5.340	32.30		32.723		32.725
V ₂ T ₄	5.376	5.372	5.374	32.91		32.916		32.918
V_2T_5	5.359	5.356	5.357	32.83		32.833		32.835
SE (m) ±	0.007	0.008	0.009	0.04		0.030		0.046
CD at 5%	0.021	0.023	0.027	0.12		0.085		0.128
$H_1V_1T_0$	Harvesting stage 6.057	6.592	6.594	35.97	(H×V×)	35.973		35.973
$H_1V_1T_0$ $H_1V_1T_1$	6.680	6.677	6.679	38.74		38.741		38.742
$H_1V_1T_2$	6.615	6.609	6.612	37.15		37.152		37.155
$H_1V_1T_3$	6.631	6.627	6.629	37.48		37.485		37.486
$H_1V_1T_4$	6.668	6.665	6.667	38.07		38.070		38.071
$H_1V_1T_5$	6.651	6.647	6.649	37.55		37.555		37.557
$\frac{H_1V_2T_0}{H_1V_2T_1}$	5.588 5.692	5.585 5.689	5.587 5.691	32.88 33.66		32.879 33.664		32.881 33.665
$\frac{H_1V_2T_1}{H_1V_2T_2}$	5.611	5.607	5.609	33.15		33.153		33.155
$H_1V_2T_2$ $H_1V_2T_3$	5.631	5.628	5.630	33.45		33.452		33.453
$H_1V_2T_4$	5.678	5.675	5.677	33.61	9	33.616		33.618
$H_1V_2T_5$	5.650	5.646	5.648	33.58		33.580		33.582
$H_2V_1T_0$	6.498	6.495	6.497	35.51		35.512		35.514
$H_2V_1T_1$	6.595 6.518	6.592	6.594 6.517	35.96 35.54		35.960 35.542		35.962 35.544
$\frac{H_2V_1T_2}{H_2V_1T_3}$	6.518	6.515 6.534	6.517	35.63		35.542		<u>35.544</u> 35.630
$H_2 V_1 T_3$ $H_2 V_1 T_4$	6.581	6.578	6.580	35.84		35.842		35.844
$H_2 V_1 T_4$ $H_2 V_1 T_5$	6.560	6.557	6.559	35.75		35.756		35.758
$H_2V_1T_0$	4.898	4.895	4.897	32.38		32.385		32.387
$H_2V_1T_1$	5.581	5.578	5.580	32.87		32.872		32.874
H ₂ V ₂ T ₂	4.909	4.906	4.908	32.48		32.479		32.480
H ₂ V ₂ T ₃	5.530	5.527	5.529	32.53		32.533		32.534
$\frac{H_2V_2T_4}{H_2V_2T_5}$	5.559 5.547	5.556 5.544	5.558 5.546	32.78 32.64		32.783 32.646		32.785 32.647
$\frac{H_2 v_2 r_5}{H_3 V_1 T_0}$	6.431	6.428	6.430	35.10		35.098		35.100
113 110	0.731	0.720	5.450	55.10	-	22.070		22.100

$H_3V_1T_1$	6.501	6.498	6.500	35.518	35.515	35.516
$H_3V_1T_2$	6.452	6.449	6.451	35.177	35.174	35.176
$H_3V_1T_3$	6.465	6.462	6.464	35.277	35.274	35.276
$H_3V_1T_4$	6.489	6.486	6.488	35.408	35.405	35.407
$H_3V_1T_5$	6.479	6.476	6.478	35.386	35.383	35.385
$H_3V_2T_0$	4.833	4.830	4.831	31.708	31.705	31.707
$H_3V_2T_1$	4.901	4.898	4.900	32.532	32.529	32.531
$H_3V_2T_2$	4.848	4.845	4.847	32.109	32.106	32.107
$H_3V_2T_3$	4.864	4.861	4.862	32.189	32.186	32.188
$H_3V_2T_4$	4.889	4.886	4.888	32.352	32.349	32.350
$H_3V_2T_5$	4.880	4.877	4.879	32.277	32.274	32.276
SE (m) ±	0.013	0.014	0.016	0.075	0.052	0.079
CD at 5%	0.036	0.040	0.046	0.211	0.148	0.221

Seed Diameter (mm): The data of seed diameter (mm) as influenced by harvesting stages, varieties, foliar spray treatments and their interactions are presented in Table 3.

Effect of harvesting stages: From the Table 3, it was seen that the seed diameter (mm) showed significant difference due to harvesting stages. The higher seed diameter (mm) 5.484, 5.479 and 5.482 (mm) was recorded at physiological maturity (H1) and the lower seed diameter (mm) 5.194, 5.190 and 5.192 (mm) was recorded at 10 days after physiological maturity (H3) during the year 2017, 2018 and on pooled basis, respectively, irrespective of varieties and foliar spray treatments.

Effect of varieties: From the data, it was found that seed diameter (mm) indicated significant differences due to the soybean varieties KDS-726 (V1) and KDS-344 (V2) during both years and on pooled basis (Table 3). The variety KDS-726 (V1) had significantly higher seed diameter (mm) as 5.385, 5.381 and 5.383 (mm) than that of KDS-344 (V2) 5.262, 5.257 and 5.259 (mm) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and foliar spray treatments.

Effect of foliar spray treatments: The data regarding seed diameter (mm) showed significant differences due to foliar spray treatment during both years and on pooled basis irrespective of harvesting stages and varieties. From the data, it was observed that the foliar spray with ascorbic acid (100 ppm) (T1) recorded maximum 5.388, 5.384 and 5.386 (mm) seed diameter followed by pyridoxine (100 ppm) (T4) 5.363, 5.358 and 5.361 (mm) seed diameter during the year 2017, 2018 and on pooled basis, respectively. While minimum seed diameter (mm) was recorded in control (T0) 5.253, 5.249 and 5.251 (mm) during the year 2017, 2018 and on pooled basis, respective of harvesting stages and varieties.

Effect of three factor interaction;- Interaction effect of harvesting stages, varieties and foliar spray treatments

From the data, it was obseved that the interaction effects of harvesting stages, varieties and foliar spray treatments on seed diameter (mm) of soybean was found significant during both years and on pooled basis are presented in Table 3. In the interaction effect of harvesting stages, varieties and foliar spray treatments, maximum seed diameter(mm) was recorded in interaction of H1V1T1 as 5.677, 5.672 and 5.675 (mm) followed by interaction H1V1T4 as 5.665, 5.660 and 5.663 (mm) during the year 2017, 2018 and on pooled basis, respectively. The minimum seed diameter (mm) was recorded in interaction H3V2T0 as 5.141, 5.137

and 5.139 (mm) during the year 2017, 2018 and on pooled basis, respectively

Seed Perimeter (mm): The data of seed perimeter (mm) as influenced by harvesting stages, varieties, foliar spray treatments and their interactions are presented in Table 3.

Effect of harvesting stages: From the Table 3, it was seen that the seed perimeter (mm) showed significant difference due to harvesting stages. The higher seed perimeter (mm) 30.154, 30.030 and 30.092 (mm) was recorded at physiological maturity (H1) and the lower seed perimeter (mm) 28.374, 28.250 and 28.312 (mm) was recorded at 10 days after physiological maturity (H3) during the year 2017, 2018 and on pooled basis, respectively, irrespective of varieties and foliar spray treatments.

Effect of varieties: From the data, it was found that seed perimeter (mm) indicated significant differences due to the soybean varieties KDS-726 (V1) and KDS-344 (V2) during both years and on pooled basis (Table 3). The variety KDS-726 (V1) had significantly higher seed perimeter (mm) as 30.418, 30.294 and 30.356 (mm) than that of KDS-344 (V2) 28.014, 27.890 and 27.952 (mm) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and foliar spray treatments.

Effect of foliar spray treatments: The data regarding seed perimeter (mm) showed significant differences due to foliar spray treatment during both years and on pooled basis irrespective of harvesting stages and varieties. From the data, it was observed that the foliar spray with ascorbic acid (100 ppm) (T1) recorded maximum 29.705, 29.702 and 29.582 (mm) seed perimeter followed by pyridoxine (100 ppm) (T4) 29.494, 29.370 and 29.432 (mm) seed perimeter during the year 2017, 2018 and on pooled basis, respectively. While minimum seed perimeter (mm) was recorded in control 28.774, 28.650 and 28.712 (mm) during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and varieties.

Effect of three factor interaction;- a) Interaction effect of harvesting stages, varieties and foliar spray treatments: From the data, it was revealed that the interaction effects of harvesting stages, varieties and foliar spray treatments on seed perimeter (mm) of soybean was found significant during both years and on pooled basis are presented in Table 3. In the interaction effect of harvesting stages, varieties and foliar spray treatments, maximum seed perimeter(mm) was recorded by the interaction of H1V1T1 as 31.563, 31.439 and 31.501 (mm) followed by interaction H1V1T4 as

31.527, 31.403 and 31.465 (mm) during the year 2017, 2018 and on pooled basis, respectively. The minimum seed perimeter (mm) was recorded in interaction H3V2T0 as

26.853, 26.729 and 26.791 (mm) during the year 2017, 2018 and on pooled basis, respectively.

Table 3: Effect of harvesting stages (H), varieties (V), foliar spray treatments (T) and their interactions on seed diameter (mm) and seed
perimeter (mm)

		_	Carl P		(6	lood	
	• (TT)			ameter (imeter (mm)
	ing stages (H)		2017		Pooled	2017	2018	Pooled
	iological maturity		5.484	5.479	5.482	30.154		30.092
	physiological maturit		5.292	5.288	5.290	29.119		29.058
	physiological maturi	ty	5.194	5.190	5.192	28.374		28.312
	E (m) ±		0.009	0.010	0.012		0.037	0.054
C	D at 5%		0.036	0.040	0.039	0.197	0.144	0.175
		Varietie			-			
	6 (Phule Sangam)		5.385	5.381	5.383	30.418		30.356
V ₂ -KDS-34	14 (Phule Agrani)		5.262	5.257	5.259	28.014	27.890	27.952
S	E (m) ±		0.002	0.001	0.002	0.006	0.003	0.006
C	D at 5%		0.007	0.003	0.006	0.016	0.010	0.016
		Treatmen	ts (T)					
To	-Control		5.253	5.249	5.251	28.774		28.712
T ₁ -Ascorbi	c acid (100 ppm)		5.388	5.384	5.386	29.705	29.582	29.644
	c acid (100 ppm)		5.285	5.281	5.283	28.912	28.788	28.850
	acid (2000 ppm)		5.313	5.309	5.311	29.122		29.060
	oxine (100 ppm)		5.363	5.358	5.361	29.494		29.432
T ₅ -Salicylic acid (100 pp		100 ppm)	5.339	5.334	5.336	29.289		29.227
	$E(m) \pm$	ioo ppin)	0.004	0.002	0.004		0.006	0.010
	D at 5%		0.004	0.002	0.004		0.000	0.010
		a ata ana v Vari				0.028	0.017	0.028
	Harvesti H ₁ V ₁	ng stages × Vario	5.586	5.581	5.584	31.207	21 000	31.144
	$H_1 V_1$ $H_1 V_2$		5.380	5.377	5.379	29.101		29.039
	H ₂ V ₁		5.343	5.339	5.341	30.402		30.341
	H_2V_2		5.242	5.238	5.240	27.836		27.775
	H_3V_1		5.227	5.223	5.225	29.645		29.583
	H_3V_2		5.161	5.157	5.159	27.104		27.042
	E (m) ±		0.004	0.002	0.004		0.006	0.010
C	D at 5%		0.011	0.005	0.011	0.028	0.017	0.028
		g stages × Treatn						
	H_1T_0		5.378	5.373	5.376	29.637		29.575
	H_1T_1		5.571	5.566	5.568	30.750	30.626	30.688
	H_1T_2		5.427	5.423	5.425	29.768	29.643	29.706
	H ₁ T ₃		5.487	5.482	5.484	30.017	29.893	29.955
	H_1T_4		5.542	5.537	5.539	30.508		30.446
	H_1T_5		5.499	5.495	5.497	30.243		30.181
	H_2T_0		5.220	5.216	5.218	28.710		28.648
	H_2T_1		5.367	5.363	5.365	29.618		29.556
	H_2T_1 H_2T_2		5.252	5.248	5.250	28.816		28.755
	H ₂ T ₂ H ₂ T ₃		5.267		5.265	29.015	20.075	28.953
						29.376		
	H ₂ T ₄ H ₂ T ₅		5.332	5.328 5.314	5.330 5.316	29.376		29.315 29.120
			5.318					
	H ₃ T ₀		5.162	5.158	5.160	27.975		27.913
	H ₃ T ₁		5.228	5.224	5.226	28.748		28.686
	H ₃ T ₂		5.177	5.173	5.175	28.152		28.090
H_3T_3			5.186	5.182	5.184	28.333		28.271
	H_3T_4			5.211	5.213	28.597		28.535
			5.215				00.010	28.380
	H ₃ T ₅		5.199	5.195	5.197	28.442		
S	H ₃ T ₅ E (m) ±		5.199 0.007	5.195 0.003	0.007	0.017	0.010	0.017
S	H ₃ T ₅ E (m) ± D at 5%		5.199 0.007 0.020	5.195 0.003 0.009		0.017		
SI	H ₃ T ₅ E (m) ± D at 5% Varie	ty × Treatment	5.199 0.007 0.020 interaction (5.195 0.003 0.009 V×T)	0.007 0.019	0.017 0.049	0.010	0.017 0.049
SI CI V ₁ T ₀	$\begin{array}{c} H_{3}T_{5} \\ E(m) \pm \\ D \text{ at } 5\% \\ \hline \\ \hline \\ 5.298 \\ \end{array}$	5.294	5.199 0.007 0.020 interaction (5.296	5.195 0.003 0.009 V×T) 29.98	0.007 0.019	0.017 0.049 29.856	0.010	0.017 0.049 29.918
SI	$\begin{array}{r} H_{3}T_{5} \\ E(m) \pm \\ D \text{ at } 5\% \\ \hline \\ \hline \\ 5.298 \\ \hline \\ 5.460 \\ \end{array}$	5.294 5.456	5.199 0.007 0.020 interaction (5.296 5.458	5.195 0.003 0.009 V×T) 29.98 30.81	0.007 0.019 80 7	0.017 0.049 29.856 30.693	0.010	0.017 0.049 29.918 30.755
SI CI V ₁ T ₀	$\begin{array}{r} H_{3}T_{5} \\ \hline E (m) \pm \\ D \text{ at } 5\% \\ \hline \\ \hline 5.298 \\ \hline 5.460 \\ \hline 5.340 \end{array}$	5.294 5.456 5.336	5.199 0.007 0.020 interaction (5.296	5.195 0.003 0.009 V×T) 29.98	0.007 0.019 80 7	0.017 0.049 29.856 30.693 30.080	0.010	0.017 0.049 29.918 30.755 30.143
$\begin{array}{c} SI\\ CI\\ \hline \\ V_1T_0\\ \hline \\ V_1T_1 \end{array}$	$\begin{array}{r} H_{3}T_{5} \\ E(m) \pm \\ D \text{ at } 5\% \\ \hline \\ \hline \\ 5.298 \\ \hline \\ 5.460 \\ \end{array}$	5.294 5.456	5.199 0.007 0.020 interaction (5.296 5.458	5.195 0.003 0.009 V×T) 29.98 30.81	0.007 0.019 80 7 05	0.017 0.049 29.856 30.693	0.010	0.017 0.049 29.918 30.755
$\begin{tabular}{c} SI \\ CI \\ \hline V_1 T_0 \\ \hline V_1 T_1 \\ \hline V_1 T_2 \\ \end{tabular}$	$\begin{array}{r} H_{3}T_{5} \\ \hline E (m) \pm \\ D \text{ at } 5\% \\ \hline \\ \hline 5.298 \\ \hline 5.460 \\ \hline 5.340 \end{array}$	5.294 5.456 5.336	5.199 0.007 0.020 interaction (5.296 5.458 5.338	5.195 0.003 0.009 V×T) 29.98 30.81 30.20	0.007 0.019 30 17 05 43	0.017 0.049 29.856 30.693 30.080	0.010	0.017 0.049 29.918 30.755 30.143
$\begin{tabular}{c} SI \\ CI \\ \hline V_1 T_0 \\ \hline V_1 T_1 \\ \hline V_1 T_2 \\ \hline V_1 T_3 \\ \hline V_1 T_4 \\ \end{tabular}$	$\begin{array}{r} H_{3}T_{5} \\ \hline E (m) \pm \\ D at 5\% \\ \hline \\ \hline \\ 5.298 \\ \hline \\ 5.460 \\ \hline \\ 5.340 \\ \hline \\ 5.374 \\ \end{array}$	5.294 5.456 5.336 5.370	5.199 0.007 0.020 interaction (5.296 5.458 5.338 5.338 5.372	5.195 0.003 0.009 V×T) 29.98 30.81 30.20 30.34	0.007 0.019 30 17 05 43 75	0.017 0.049 29.856 30.693 30.080 30.219	0.010	0.017 0.049 29.918 30.755 30.143 30.281
$\begin{tabular}{c} SI \\ CI \\ \hline V_1 T_0 \\ \hline V_1 T_1 \\ \hline V_1 T_2 \\ \hline V_1 T_3 \\ \hline V_1 T_4 \\ \hline V_1 T_5 \\ \end{tabular}$	$\begin{array}{r} H_{3}T_{5} \\ \hline E (m) \pm \\ D at 5\% \\ \hline \\ \hline \\ 5.298 \\ \hline \\ 5.460 \\ \hline \\ 5.340 \\ \hline \\ 5.374 \\ \hline \\ 5.434 \\ \hline \\ 5.406 \\ \end{array}$	5.294 5.456 5.336 5.370 5.430 5.402	5.199 0.007 0.020 interaction (5.296 5.458 5.338 5.372 5.432 5.404	5.195 0.003 0.009 V×T) 29.98 30.81 30.20 30.34 30.67 30.48	0.007 0.019 30 17 05 13 75 38	0.017 0.049 29.856 30.693 30.080 30.219 30.552 30.364	0.010	0.017 0.049 29.918 30.755 30.143 30.281 30.614 30.426
$\begin{tabular}{c} SI \\ CI \\ \hline V_1 T_0 \\ \hline V_1 T_1 \\ \hline V_1 T_2 \\ \hline V_1 T_3 \\ \hline V_1 T_4 \\ \end{tabular}$	$\begin{array}{r} H_{3}T_{5} \\ \hline E (m) \pm \\ D at 5\% \\ \hline \\ \hline \\ 5.298 \\ \hline \\ 5.460 \\ \hline \\ 5.340 \\ \hline \\ 5.374 \\ \hline \\ 5.434 \\ \end{array}$	5.294 5.456 5.336 5.370 5.430	5.199 0.007 0.020 interaction (5.296 5.458 5.338 5.372 5.432	5.195 0.003 0.009 V×T) 29.98 30.81 30.20 30.34 30.67	0.007 0.019 30 77 43 75 38 58	0.017 0.049 29.856 30.693 30.080 30.219 30.552	0.010	0.017 0.049 29.918 30.755 30.143 30.281 30.614

V ₂ T ₃	5.253	5.248	5.251	27.900	27.776	27.838
V2T4	5.291	5.287	5.289	28.312	28.188	28.250
V2T5	5.271	5.266	5.268	28.090	27.966	28.028
SE (m) ±	0.006	0.003	0.005	0.014	0.009	0.014
CD at 5%	0.016	0.003	0.015	0.040	0.024	0.040
CD at 570		$es \times Variety \times Tre$				0.040
$H_1V_1T_0$	5.466	5.461	5.463	30.770	30.646	30.708
$H_1V_1T_1$	5.677	5.672	5.675	31.563	31.439	31.501
$H_1V_1T_2$	5.524	5.519	5.522	30.970	30.843	30.906
$H_1V_1T_3$	5.584	5.579	5.582	31.097	30.973	31.035
$H_1V_1T_4$	5.665	5.660	5.663	31.527	31.403	31.465
$H_1V_1T_5$	5.600	5.595	5.598	31.313	31.189	31.251
$H_1V_2T_0$	5.290	5.285	5.288	28.504	28.379	28.442
$H_1V_2T_1$	5.464	5.460	5.462	29.937	29.813	29.875
$H_1V_2T_2$	5.330	5.326	5.328	28.567	28.443	28.505
$H_1V_2T_3$	5.389	5.385	5.387	28.937	28.813	28.875
$H_1V_2T_4$	5.418	5.413	5.416	29.490	29.366	29.428
$H_1V_2T_5$	5.399	5.394	5.396	29.173	29.049	29.111
$H_2V_1T_0$	5.248	5.244	5.246	30.073	29.949	30.011
$H_2V_1T_1$	5.443	5.439	5.441	30.763	30.639	30.701
$H_2V_1T_2$	5.291	5.287	5.289	30.230	30.106	30.168
$H_2V_1T_3$	5.309	5.305	5.307	30.303	30.179	30.241
$H_2V_1T_4$	5.387	5.383	5.385	30.596	30.473	30.535
$H_2V_1T_5$	5.378	5.374	5.376	30.450	30.326	30.388
$H_2V_1T_0$	5.191	5.187	5.189	27.346	27.223	27.285
$H_2V_1T_1$	5.290	5.286	5.288	28.473	28.349	28.411
$H_2V_2T_2$	5.212	5.208	5.210	27.403	27.279	27.341
$H_2V_2T_3$	5.225	5.221	5.223	27.726	27.603	27.665
$H_2V_2T_4$	5.276	5.272	5.274	28.156	28.033	28.095
$H_2V_2T_5$	5.257	5.253	5.255	27.913	27.789	27.851
$H_3V_1T_0$	5.182	5.178	5.180	29.097	28.973	29.035
$H_3V_1T_1$	5.259	5.255	5.257	30.123	29.999	30.061
$H_3V_1T_2$	5.204	5.200	5.202	29.417	29.293	29.355
$H_3V_1T_3$	5.228	5.224	5.226	29.630	29.506	29.568
$H_3V_1T_4$	5.250	5.246	5.248	29.903	29.779	29.841
$H_3V_1T_5$	5.241	5.237	5.239	29.700	29.576	29.638
$H_3V_2T_0$	5.141	5.137	5.139	26.853	26.729	26.791
$H_3V_2T_1$	5.196	5.192	5.194	27.373	27.249	27.311
$H_3V_2T_2$	5.150	5.146	5.148	26.887	26.763	26.825
$H_3V_2T_3$	5.143	5.139	5.141	27.037	26.913	26.975
$H_3V_2T_4$	5.180	5.176	5.178	27.290	27.166	27.228
H ₃ V ₂ T ₅	5.156	5.152	5.154	27.183	27.059	27.121
SE (m) ±	0.010	0.004	0.009	0.024	0.015	0.025
CD at 5%	0.028	0.013	0.026	0.069	0.042	0.069

Seed Roundness Effect of harvesting stages

From the Table 4, it was seen that the seed roundness showed significant difference due to harvesting stages. The higher seed roundness 94.371, 94.364 and 94.367 was recorded at physiological maturity (H1) and the lower seed roundness 92.993, 92.989 and 92.991 was recorded at 10 days after physiological maturity (H3) during the year 2017, 2018 and on pooled basis, respectively, irrespective of varieties and foliar spray treatments.

Effect of varieties: From the data, it was found that seed roundness indicated significant differences due to the soybean varieties KDS-726 (V1) and KDS-344 (V2) during both years and on pooled basis (Table 4). The variety KDS-726 (V1) had significantly higher seed roundness as 93.974, 93.970 and 93.972 than that of KDS-344 (V2) 93.332, 93.326 and 93.329 during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and foliar spray treatments.

Effect of foliar spray treatments: The data regarding seed roundness showed significant differences due to foliar spray treatment during both years and on pooled basis irrespective of harvesting stages and varieties. From the data, it was observed that the foliar spray of ascorbic acid (100 ppm) (T1) recorded maximum 93.969, 93.965 and 93.967 seed roundness followed by pyridoxine (100 ppm) (T4) 93.865, 93.861 and 93.863 seed roundness during the year 2017, 2018 and on pooled basis, respectively. While minimum seed roundness was recorded in control 93.284, 93.280 and 93.282 during the year 2017, 2018 and on pooled basis, respectively, irrespective of harvesting stages and varieties.

Effect of three factor interaction;- a) Interaction effect of harvesting stages, varieties and foliar spray treatments: From the data, it was revealed that the interaction effects of harvesting stages, varieties and foliar spray treatments on seed roundness of soybean was found significant during both years and on pooled basis are presented in Table 4. In the interaction effect of harvesting stages, varieties and

foliar spray treatments, maximum seed roundness was recorded in interaction of H1V1T1 as 95.043, 95.038 and 95.041 followed by interaction H1V1T4 as 94.943, 94.939 and 94.941 during the year 2017, 2018 and on pooled basis,

respectively. The minimum seed roundness was recorded in interaction H3V2T0 as 92.343, 92.339 and 92.341 during the year 2017, 2018 and on pooled basis, respectively.

Table 4: Effect of harvesting stages (H), varieties (V), foliar spray treatments (T) and their interactions on seed roundness

			Seed roundness	
Harvesting stages (H		2017	2018	Pooled
H ₁ -At physiological mat		94.371	94.364	94.367
H ₂ - 5 days after physiological	maturity	93.596	93.593	93.594
H ₃ - 10 days after physiologica	l maturity	92.993	92.989	92.991
$SE(m) \pm$		0.052	0.033	0.054
CD at 5%		0.205	0.131	0.175
	Varieties(
V ₁ -KDS-726 (Phule Sang		93.974	93.970	93.972
V2-KDS-344 (Phule Agr	ani)	93.332	93.326	93.329
SE (m) ±		0.006	0.003	0.006
CD at 5%	0.017	0.009	0.016	
	Treatments			
T ₀ -Control		93.284	93.280	93.282
T ₁ -Ascorbic acid (100 p	93.969	93.965	93.967	
T ₂ -Salicylic acid (100 p)		93.426	93.422	93.424
T ₃ -Humic acid (2000 pp		93.607	93.603	93.605
T ₄ -Pyridoxine (100 ppr		93.865	93.861	93.863
-Salicylic acid (100 ppm) + Ascorb	ic acid (100 ppm)	93.769	93.760	93.765
SE (m) ±		0.010	0.006	0.010
CD at 5%		0.029	0.016	0.028
	g stages × Variet			
H_1V_1		94.724	94.719	94.722
H_1V_2		94.017	94.008	94.012
H_2V_1		93.920	93.917	93.918
H_2V_2		93.272	93.269	93.271
H_3V_1		93.279	93.275	93.277
H_3V_2		92.707	92.703	92.705
SE (m) ±		0.010	0.006	0.010
CD at 5%		0.029	0.016	0.028
	stages × Treatme			-
H_1T_0		93.958	93.954	93.956
H_1T_1		94.707	94.702	94.704
H_1T_2		94.097	94.093	94.095
H ₁ T ₃		94.333	94.329	94.331
H_1T_4		94.620	94.616	94.618
H_1T_5		94.508	94.488	94.498
H_2T_0		93.218	93.214	93.216
H_2T_1		93.948	93.944	93.946
H ₂ T ₂		93.365	93.361	93.363
H ₂ T ₃		93.515	93.511	93.513
H_2T_4		93.823	93.819	93.82
H ₂ T ₅		93.710	93.706	93.708
H ₃ T ₀		92.675	92.671	92.673
H ₃ T ₁		93.252	93.248	93.250
H ₃ T ₂		92.817	92.813	92.815
H ₃ T ₃		92.972	92.968	92.970
H_3T_4		93.152	93.148	93.150
H ₃ T ₅		93.090	93.086	93.088
SE (m) ±		0.018	0.010	0.018
CD at 5%	0.051	0.027	0.049	
Variet	y × Treatment in	teraction (V×T))	
V_1T_0	93.585	93.581	93.583	
V ₁ T ₁ 94.269		94.264	94.267	
V ₁ T ₂ 93.757		93.753	93.755	
V ₁ T ₃ 93.944		93.940	93.942	
V_1T_4	94.191	94.187	94.189	
V1T5	94.100	94.096	94.098	
V_2T_0	92.982	92.978	92.980	
V_2T_1	93.669	93.665	93.667	
V_2T_2	93.095	93.092	93.094	
V ₂ T ₃	93.269	93.265	93.267	

V_2T_4	93.539	93.535	93.537
V ₂ T ₅	93.439	93.424	93.431
SE (m) ±	0.015	0.008	0.014
CD at 5%	0.041	0.022	0.040
	stages × Variety × Tre		
$H_1V_1T_0$	94.317	94.311	94.314
$H_1V_1T_1$	95.043	95.038	95.041
$H_1V_1T_2$	94.500	94.496	94.498
$H_1V_1T_3$	94.690	94.686	94.688
$H_1V_1T_4$	94.943	94.939	94.941
$H_1V_1T_5$	94.850	94.846	94.848
$H_1V_2T_0$	93.600	93.596	93.598
$H_1V_2T_1$	94.370	94.366	94.368
$H_1V_2T_2$	93.693	93.689	93.691
$H_1V_2T_3$	93.977	93.973	93.975
$H_1V_2T_4$	94.297	94.293	94.295
$H_1V_2T_5$	94.167	94.129	94.148
$H_2V_1T_0$	93.433	93.429	93.431
$H_2V_1T_1$	94.303	94.299	94.301
$H_2V_1T_2$	93.626	93.623	93.625
$H_2V_1T_3$	93.833	93.829	93.831
$H_2V_1T_4$	94.226	94.223	94.225
$H_2V_1T_5$	94.100	94.096	94.098
$H_2V_1T_0$	93.003	92.999	93.001
$H_2V_1T_1$	93.593	93.589	93.591
$H_2V_2T_2$	93.103	93.099	93.101
$H_2V_2T_3$	93.196	93.193	93.194
$H_2V_2T_4$	93.420	93.416	93.418
$H_2V_2T_5$	93.320	93.316	93.318
$H_3V_1T_0$	93.007	93.003	93.005
$H_3V_1T_1$	93.460	93.456	93.458
$H_3V_1T_2$	93.143	93.139	93.141
$H_3V_1T_3$	93.310	93.306	93.308
$H_3V_1T_4$	93.403	93.399	93.401
$H_3V_1T_5$	93.350	93.346	93.348
H ₃ V ₂ T ₀	92.343	92.339	92.341
$H_3V_2T_1$	93.043	93.039	93.041
H ₃ V ₂ T ₂	92.490	92.486	92.488
H ₃ V ₂ T ₃	92.633	92.629	92.631
H ₃ V ₂ T ₄	92.900	92.896	92.898
H ₃ V ₂ T ₅	92.830	92.826	92.828
SE (m) ±	0.025	0.014	0.025
CD at 5%	0.071	0.039	0.070
· · · · · · · · · · · · · · · · · · ·			

From the investigation, it can be concluded that the soybean varieties harvested at physiological maturity (H1) given better response to foliar spray with ascorbic acid @ 100 ppm and pyridoxine @ 100 ppm for seed morphometry parameters.

Conclusion

The document extensively discusses the effects of antioxidant foliar application and different harvesting stages on the morphometry of soybean seeds. It presents detailed results on how these factors influence various seed characteristics such as length, width, area, diameter, and perimeter. The study highlights the significant impact of antioxidant treatments and optimal harvesting times on enhancing seed quality, suggesting that such agricultural practices can effectively improve soybean seed characteristics. The findings contribute valuable insights for optimizing soybean production through strategic antioxidant use and timing of harvest.

References

1. Akparobi SO. Evaluation of six cultivars of soybean under the soil of rain forest agro-ecological zones of

Nigeria. Middle-East Journal of Scientific Research. 2009;4(1):06-09.

- 2. Bademuqiqige Z, Sun P, Li Y, Dong S, Jiang J, Yang J. The effect of harvest time on seed germination characteristics of *Seriphidium transiliense* in northern Xinjiang, China. Seed Science and Technology. 2018;46(1):139-147.
- 3. Beltaji MS. Exogenous ascorbic acid (vitamin C) induced anabolic changes for salt tolerance in chick pea (*Cicer arietinum* L.) plants. African Journal of Plant Science. 2008;2(10):118-123.
- Canavar O, Kaynak MA. Determination of yield and yield components and seed quality of peanuts (*Arachis hypogea* L.) at different harvest times. International Journal of Agronomy and Plant Production. 2013;4(S):3791-3803.
- Dolatabadian A, Modarres-Sanavy SAM. Effect of the ascorbic acid, pyridoxine and hydrogen peroxide treatments on germination, catalase activity, protein and malondialdehyde content of three oil seeds. Notulae Botanicae Horti Agrobotanici Cluj-Napoca Journal. 2008;36(2):61-66.

- 6. Havstad LT, Aamlid TS. Influence of harvest time and storage location on the longevity of timothy (*Phleum pratense* L.) seed. Acta Agriculturae Scandinavica, Section B-Soil and Plant Science. 2013;63(5):453-459.
- Jacobsen SE, Christiansen JL. Some agronomic strategies for organic quinoa (*Chenopodium quinoa* Willd.). Journal of Agronomy and Crop Science. 2016;202(6):454-463.
- 8. Jandong EA, Uguru MI, Oyiga BC. Determination of yield stability of seven soybean (*Glycine* max) genotypes across diverse soil pH levels using GGE biplot analysis. Journal of Applied Biosciences. 2011;43:2924-2941.
- 9. Kaydan D, Yagmur M, Okut N. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (*Triticum aestivum* L.). Tarim Bilimleri Dergisi. 2007;13(2):114-119.
- 10. Nichal SS, Shinde SM, Wasim M, Patel Y, Mahalle AR, Nandanwar RS. Crop physiological maturity: A proper stage to harvest soybean crop. International Journal of Current Microbiology and Applied Sciences. 2018;6:2430-2435.
- 11. Raei E, Sedghi M, Sayed SR. Effect of bradi rhizobium inoculation, application of nitrogen and weeding on growth and seed filling rate in soybean. Journal of Agricultural Technology. 2008;12(43):91-81.
- 12. Salwa AIE, Taha MB, Abdalla MAM. Amendment of soil fertility and augmentation of the quantity and quality of soybean crop by using phosphorus and micronutrients. International Journal of Academic Research. 2011;3(2):800-808.
- Sintim HY, Zheljazkov VD, Obour AK, Garcia AG. Managing harvest time to control pod shattering in oilseed camelina. Agronomy Journal. 2016;108(2):392-400.
- Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, *et al.* QTL analyses of seed weight during the development of soybean (*Glycine max* L. Merr). Heredity. 2009;102(4):372-380.