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Abstract 
4-nonylphenol (4-NP) is a phenolic chemical that disrupts the endocrine system and is used in a range 
of industrial goods. It poses a health hazard to both humans and aquatic animals. A total of 216 adult 
male zebrafish (Danio rerio) were used in the research to examine the harmful effects of 4-NP on the 
eyes of zebrafish. The fish were exposed to 4-NP on a daily basis for a duration of 21 days. The 
zebrafish were placed into four groups for the experiment: control group (C1), vehicle group (C2), 
treatment 1 group (T1), and treatment 2 group (T2). Each group consisted of 54 zebrafish. The C1 group 
was exposed to reverse osmosis water, while the C2 group was exposed to water containing 100% 
ethanol as a vehicle at a concentration of 10 μl/L. The T1 and T2 groups were exposed to water 
containing 4-NP at concentrations of 100 μg/L and 200 μg/L, respectively. The T1 and T2 groups 
exhibited a notable reduction in the activity of SOD and the level of GSH in the eye, compared to the 
C1 group. However, the T2 group showed a large rise in MDA level compared to the C1 group. The 
CAT activity in the T1 and T2 groups is significantly reduced in the eye compared to the C1 group. 
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Introduction 
The USEPA defines endocrine-disrupting chemicals (EDCs) as exogenous substances that 
disrupt hormone synthesis, secretion, transportation, metabolism, binding, and elimination. 
Reproduction, internal equilibrium, development, and maturation need these hormones [27]. 
EDCs mostly damage the endocrine system by mimicking or inhibiting hormone receptors 
[36]. They may also affect metabolism and hormone secretion.  
Some endocrine-disrupting chemicals (EDCs) are purposely produced as wastes, products, 
intermediates, plasticizers, and flame retardants. Butyl benzyl phthalate, bisphenol A, 4-tert-
pentylphenol, 4-NP, dioxins, phenanthrene, polychlorinated biphenyls, polybrominated 
diphenyl ethers, and plastic packaging raw materials [26, 39]. However, numerous Endocrine-
Disrupting Chemicals (EDCs) are purposely made as key components of paints, cosmetics, 
soaps, and plastics. Many household and commercial wastes are purposely dumped in rivers 
and coastal regions, while chemicals from the surrounding land are accidently released [46]. 
Frequent exposure to low concentrations of endocrine-disrupting chemical (EDC) 
combinations increases sickness risk [27].  
Brain diseases and central nervous system changes may be affected by EDCs. EDCs, or 
neural-disrupting substances, impair neuronal transmission and network development [26]. 
Endocrine-disrupting chemicals (EDCs) may impair aquatic creatures' reproductive, 
cognitive, and developmental functioning [21]. The breakdown of nonylphenol ethoxylates 
produces 4-NP. Degradation of alkylphenol ethoxylates produces these compounds [23]. It is 
classified as an endocrine-disrupting chemical (EDC) due to its similarity to natural 
oestrogens, notably 17-β-estradiol, and its capacity to disrupt hormonal functioning [25]. 4-NP 
may influence animal reproduction by being antiandrogenic and estrogenic. Lipidophilic 4-
NP accumulates in cells and organs [41].  
Non-ionic detergents using nonylphenol ethoxylates are used in the cleaning, plastic, textile, 
and paper sectors [31]. NP and similar chemicals are released into the aquatic environment 
when people make cosmetics, home cleansers, paints, plastics, papers, wastewater treatment 
plant effluents, and sewage sludge [29].  
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Many studies have demonstrated that NP may cause 

physiological, histological, and behavioural alterations in 

fish [6, 5, 8]. Zebrafish are great toxicological model animals 

and aid other disciplines [44, 48]. Zebrafish are better toxicity 

models than other vertebrates due to their size, simplicity of 

husbandry, and early morphogenesis. Unlike trout, adult 

zebrafish are one to 1.5 inches long. Many companies 

specialise in zebrafish aquaria that may hold several 

thousand fish due to reduced housing and care costs. 

Zebrafish have been employed in labs for a long time, thus 

breeding and maintenance conditions are optimal [22]. 

Zebrafish, both larval and adult, use fewer dosing solutions 

(experimental chemicals, medications, contaminants) and 

create less waste than bigger species, reducing costs. They 

also need fewer labware and chemicals to treat and maintain 

live fish and perform tests and histological assessments 

(small quantities of reagents and embedding materials and 

microscope slides) [20].  
 

Materials and Methods 

Chemicals 

4-Nonylphenol (4-NP) of analytical grade were purchased 

from Sigma-Aldrich Chemical Pvt. Ltd., Mumbai (Product 

code - 46405). Other chemical used in analysis are 

molecular or analytical grade. 
 

Experimental animals and environment 

The 216 adult male zebrafish (Danio rerio) employed in this 

study had an average body weight of 0.45±0.05 g. The fish 

were over three months. Mumbai-based Vikrant Aqua 

Culture supplied the zebrafish. An 18L by 9W by 12H, 20 L 

glass tank held the zebrafish. The aquarium has RO water 

and proper aeration. Stones enhance aquariums. Adult fish 

in each group were maintained in 25-28 °C water with pH 

6.8-7.4, electrical conductivity 500-600 μs, and 200-250 

harness. Aerators kept water oxygenated. A 14:10 light-dark 

cycle was maintained throughout the study. Fish were given 

freeze-dried blood worms (Hallofeed®, Maharashtra 

Aquarium, Mumbai) and fish pellets ad libitum during the 

study. The College of Veterinary Science and Animal 

Husbandry, KU, Junagadh, Institutional Animal Ethics 

Committee approved the experimental protocol, including 

fish numbers and methods (Protocol no: 

JAU/JVC/IAEC/SA/71/2020).  
 

Experimental design 

The study randomly divided 216 adult male zebrafish (> 3 

months old) into four 54-fish groups (Table 1). The fish 

were exposed to 4-NP for 21 days. The Mettler Toledo MS 

204S/A01 analytical weighing balance properly weighed 4-

NP. Each day, fresh 4-NP water was added to maintain the 

level. 
 

Table 1: Zebrafish used to evaluate different parameters during the study 
 

Parameters No. of Zebrafish 

Oxidative stress (54 in each group; pooled samples of 9 fish and 6 replications) 216 

Total 216 

 

Collection of samples 

After the experiment, all fish were mercifully killed with ice 

cold [51]. Each fish's eye was dissected under a stereo zoom 

microscope (Model CZM6, Labomad Inc., USA). Table 2 

shows how eye tissue samples were taken for oxidative 

stress testing. After tissue homogenate was made using 

micro pestles, each sample was centrifuged at 12000 g for 

10 minutes at 4 °C, except SOD, which was centrifuged for 

40 minutes. The supernatant was stored at -80 °C before 

being used to measure GSH, MDA, SOD, and CAT. Two 

days following sample collection, oxidative stress indicators 

were measured. 

 
Table 2: Collection of eye tissues for oxidative stress parameters studies 

 

Parameters Target No. of fish used Sample collection 

Oxidative stress 

SOD 12 pair of eye (12 fish) Tris EDTA buffer @ 1 ml/ 100 mg tissue 

CAT/GSH 30 pair of eye (30 fish) Phosphate buffer saline @ 1 ml/ 100 mg tissue 

MDA 12 pair of eye (12 fish) Butylated hydroxyl toluene @ 1.5 ml/100 mg tissue 

 

Evaluation of oxidative stress markers in eye tissue  

SOD activity was easily determined by the enzyme's ability 

to inhibit pyrogallol from autoxidizing in Tris-EDTA at pH 

7.9–10.6 [35]. Based on the reduction of dichromate in acetic 

acid to chromic acetate upon heating in H2O2, with the 

creation of perchloric acid as an unstable intermediate [43], 

calculated tissue CAT activity [15]. 5, 5′-dithiobis-(2-

nitrobenzoic acid) (DTNB) oxidises GSH to create 5-thio-2-

nitrobenzoic acid (TNB), a yellow complex used to measure 

tissue GSH levels. Thiobarbituric acid (TBA) forms an 

MDA-TBA combination with n-butanol to produce a layer, 

which is used to measure tissue MDA [34]. An ELISA plate 

reader (Multiscan Go, Thermofisher Scientific Cat. No. 

N10588) measures the absorbance of the sample and each 

sample combination at four wavelengths: 420 nm (SOD 

activity), 570-610 nm (CAT activity), 412 nm (GSH level), 

and 532-nm (MDA level 

 

Data analysis: All data was statistically analysed using 

Graph Pad prism 9.0. Bartlett's test confirmed equal 

variance and Kolmogorov-Smirnov test verified data 

normality. Parametric one-way ANOVA and Tukey's HSD 

test were used to analyse homogenous variance and normal 

distribution data. Kruskal-Walli and Dunn tests analysed 

non-normal data. p<0.05 was judged significant, whereas 

p<0.01 and p<0.001 indicated extremely significant 

differences. 

 

Result 

Oxidative stress markers 

Oxidative stress markers evaluated in eye tissue of adult 

male zebrafish of different groups are depicted in Figure 1. 

In eye, SOD and CAT activity; GSH level were significantly 

decreased in T1 and T2 groups as compared to C1 group. 

However, MDA level in eye of T1 and T2 groups were 

significantly higher as compared to C1 and C2 groups. 
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Fig 1: Oxidative stress parameters of zebrafish eye tissue at the end of experiment period; Where * indicates p<0.05, ** indicates p<0.01, 

*** indicates p<0.005, **** indicates p<0.001. 

 

Discussion 

All eukaryotic creatures need oxygen as fuel, and ROS may 

harm cells and organelles at high oxygen levels [4]. ROS 

dysregulation damages lipids, proteins, and DNA [13]. 

Organs contain enzymatic and non-enzymatic ROS 

neutralizers to avoid oxidative damage. When ROS 

production exceeds antioxidant defence or disturbs redox 

signalling, lipid peroxidation, protein oxidation, enzyme 

inactivation, and DNA breakage may cause cancer, ageing, 

and neurological diseases [4, 9, 32].  

Since SOD, CAT, and GSH are the first line of defence 

against free radicals, which produce oxidative stress, 

variations in their activity may be valuable indicators for 

aquatic creatures' environmental toxicity [33, 38]. Aquatic 

species' antioxidant enzyme activity changes with 4-

nonylphenol [11].  

SOD converts superoxide into hydrogen peroxide, which 

CAT lowers to water and oxygen [10, 17]. SOD may convert 

superoxide anions to hydrogen peroxide even when its 

activity decreases [22]. According to Valavanidis et al. 

(2006), the hydroxyl radical is the most reactive biological 

and toxicological free radical. Water and oxygen are 

generated by CAT from H2O2. Oxidatively stressed tissue 

enzymes that convert a lot of hydrogen peroxide may limit 

CAT activity [30]. The inactivation of the active enzyme 

molecule causes CAT to inactivate fast at high hydrogen 

peroxide concentration [52].  

Jafari (2007) implies that GSH/GSSG and GSH-related 

enzymes prevent oxidative damage. Non-enzymatic radical 

scavenger and antioxidant glutathione eliminates free 

radicals from oxidative metabolism that antioxidant 

enzymes cannot [16]. GSH's sulfhydryl group oxidises to 

GSSG during metabolism [12]. GR recycles GSH from GSSG 

and protects cells from free radicals [14]. Thus, GR and GSH 

recycling balance intracellular GSH-GSSG [42].  

LPO damages non-enzymatic thiol antioxidants like GSH, 

which prevent lipid peroxidation. Several oxidative stress 

illnesses need GSH to scavenge free radicals [45]. 4-NP-

induced neurotoxicity targets GSH inactivation [45, 54].  

CAT and SOD activities in common carp brains treated with 

17-β estradiol were considerably higher than in the control 

group, whereas NP dramatically lowered SOD and CAT 
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activities in tilapia liver and kidney [37]. The brains of rats 

administered 25 mg/kg/day NP orally for 45 days showed a 

significant decline in GSH and SOD activity [47].  

MDA levels were higher in the treatment group than the 

control group. Previous research has found elevated MDA 

levels in zebrafish embryos (100 μg/L) exposed to 4-NP for 

168 hours post-fertilization [53], adult zebrafish exposed to 

heavy metal for 21 days [28, 40], rats treated with NP (25 

mg/kg/day, orally for 45 days [7], tilapia fish (37), and 

African catfish (0.1 mg/Kg body weight for 3 weeks [1]).  

Various xenobiotics induce reactive species to form within 

the brain membrane, decreasing metabolic enzyme activity 

and increasing LPO [7]. SOD activity was decreased in the 4-

NP group because prolonged exposure increased brain 

superoxide anion [47].  

 

Conclusions 

Exposure to 200 µg/L 4-nonylphenol in water for 21 days 

causes severe oxidative damage in zebrafish eyes. 
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