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Abstract 

The present study aimed to explore pure SNP densities within Indian, Asian, and exotic sheep breeds 

using Ovine 50K SNP BeadChip data. This study explored Common Single Nucleotide Polymorphisms 

(SNPs) in datasets A, B, C, and D, revealing genetic variations among Asian, exotic, and Indian sheep 

breeds. Venn diagrams identified 13 (0.32%), 201 (1.67%), and 30 (0.15%) common SNPs across all 

datasets at different genomic densities (1K, 3K, 5K, 10K, and 20K). Using the Frequent item Feature 

Selection (FIFS) method, unique SNP patterns emphasized genetic differentiation among datasets. 

Imputation accuracy varied across densities, with dataset A showing the highest average accuracy at 5K 

(0.6124). Challenges in SNP selection for 10K and 20K densities in datasets A, B, and D indicated 

difficulties in capturing common SNPs. The study's insights into discriminant SNP loci on specific 

chromosomes, like ovine chromosomes 17, 6, 4, 15, 19, 12, and 8, offer potential for cost-effective 

SNP assays in sheep breed assignment. These findings aim to aid in developing low-cost genotyping 

methods, reducing genotyping expenses in diverse sheep breeds. 

 

Keywords: SNP, genotyping, imputation, pruning, frequencies 

 

Introduction 

In the realm of animal genetics and breeding, the application of high-throughput genotyping 

technologies, such as SNP arrays, has significantly progressed our comprehension of genetic 

diversity, evolutionary connections, and breeding strategies across diverse livestock 

populations (Fan, 2010) [5]. Ensuring the reliability, accuracy, and integrity of genotyping 

data is crucial in genetic analysis and research, involving quality pruning and the exclusion 

of outlier individuals (Weale, 2010) [17]. Quality pruning necessitates the implementation of 

rigorous criteria to filter out low-quality or unreliable genotyping data, including the removal 

of SNPs with high missing rates, those deviating from Hardy-Weinberg equilibrium, and 

those with low minor allele frequencies (Pavan, 2020) [12]. Similarly, removing outlier 

individuals eliminates data points potentially affected by experimental or biological factors, 

ensuring the remaining dataset accurately represents the true genetic composition of the 

studied population (Motulsky, 2006) [11]. By discarding poor-quality SNPs and outliers, 

researchers minimize noise and biases that could distort results (Guo, 2013) [8]. By applying 

quality control measures, researchers can more effectively identify true genetic signals and 

assess population-specific traits (Fuentes-Pardo & Ruzzante, 2017) [7]. Venn diagrams are 

employed to depict unique and shared SNPs among various sheep breeds or populations, 

aiding researchers in understanding genetic diversity and relationships between breeds. For 

instance, a Venn diagram can illustrate SNPs exclusive to one breed and those shared 

between two or more breeds (Crispim, 2019) [3].  

Genotype imputation is a crucial aspect of genome-wide association studies, allowing precise 

evaluation of association evidence at ungenotyped markers and consolidating diverse 

genotyping platform results. This technique utilizes shared haplotypes to accurately estimate 

effects of ungenotyped variants, relying on identity by descent (IBD) to identify chromosome 

segments without recombination since a common ancestor (Rabiner, 1989) [13]. The 

imputation process identifies untyped SNPs with strong association signals, influencing 

follow-up strategies and aiding in reconstructing missing genotypes in pedigreed data 
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(Ellinghaus et al., 2009) [4]. Genotype imputation relies on 

haplotype references, often sourced from the International 

HapMap Project (The International HapMap Consortium, 

2003) [15]; (The International HapMap Consortium, 2005) 
[14]. Various software tools, such as BEAGLE, MINIMAC, 

MaCH, and FIMPUTE, employ different principles for 

imputing genotyping data from missing or untyped entries, 

typically requiring a phasing step.   

Operating on the Java platform, BEAGLE is platform-

independent, with a discrete input genotype format and 

posterior probability as the output genotype. The Allelic R 

square serves as the quality measure for BEAGLE's 

imputation process. Notably, BEAGLE is equipped to 

handle multi-allelic markers (Browning and Browning, 

2007) [2]. MINIMAC is an efficient implementation of the 

MaCH algorithm for genotype imputation, designed for low 

memory usage and computational efficiency. The current 

version of MINIMAC is available in two forms: minimac 

and minimac-omp. The latter utilizes the OpenMP protocol 

for multi-threading, resulting in enhanced throughput 

(Howie et al., 2012) [9]; Fuchsberger et al., 2014) [6]. 

Progress in animal genetics, driven by advanced genotyping 

techniques such as SNP arrays, has greatly enhanced our 

comprehension of genetic diversity, evolution, and the 

breeding of livestock. Low-density SNP chips provide an 

economical way to genotype extensive populations 

concurrently. Although Venn diagrams serve as a valuable 

instrument for exploring data, they usually present fixed 

perspectives of two datasets. These diagrams depict the 

percentages of common SNPs, highlighting the distinctions 

between unique and shared SNPs among datasets. 

 

Materials and Methods 

The genotyping data were sourced from publicly available 

databases, consortia, and/or datasets associated with existing 

scientific literature. The data specifically pertained to the 

Ovine50KSNP BeadChip density and were generated for 

Indian sheep breeds (Changthangi, Tibetan, Deccani, 

Garole), Asian sheep breeds (Bangladeshi Garole, 

Bangladeshi East), and Exotic sheep breeds (Rambouillet 

and Australian Merino) and made datasets A (Indian sheep 

breeds), B (Indian and Asian sheep breeds), C (Indian and 

Exotic) and D (Indian, Asian and Exotic sheep breeds) 

(DataSheet:Agrigenomics;https://www.illumina.com/docum

ents/products/datasheets/datasheet_ovinesnp50.pdf).  

FIFS approache and datasets were employed to detect 

shared Single Nucleotide Polymorphisms (SNPs) among 

diverse sheep breeds after quality pruning through plink. 

Genomic datasets A, B, C, and D were subjected to the FIFS 

method for SNP detection and the identified SNPs were 

subsequently compared using Venn diagrams generated 

through web-based tools. Venn diagrams were employed to 

visualize common SNPs across the diverse datasets. 

Subsequently, imputation accuracy was assessed by varying 

densities (1K, 3K, 5K) using the FIFS method in the TRES 

program. These diagrams aided in distinguishing SNPs that 

were specific to particular sheep breeds and those that were 

shared among them. The imputation accuracy of SNP panels 

with various densities was evaluated using two BEAGLE 

approaches (Ellinghaus et al., 2009) [4]. The original datasets 

were randomly divided into test and reference datasets at 

different ratios. Initially, the datasets were separated on a 

chromosome-wise basis using the PLINK program. Prior to 

imputation, genotypic data were phased chromosome-wise. 

The accuracy of imputation was determined by the 

program's ability to predict accurate genotypes, assessed 

through the DR2 method (Browning et al., 2018). The 

resulting estimates from the two programs were recorded 

and evaluated across different low-density panels, with 

imputation accuracy assessed on a chromosome-wise basis. 

Additionally, the accuracy of both direct and step-wise 

imputation methods was also examined. 

 

Result and Discussion  

Common Single Nucleotide Polymorphisms (SNPs) were 

identified across datasets A, B, C, and D, showcasing 

distinctions in the genetic makeup of Asian, exotic, and 

Indian sheep breeds. A Venn diagram was employed to 

visually represent the shared SNPs among all four datasets. 

The Venn diagram analysis revealed 13 (0.32%), 201 

(1.67%), and 30 (0.15%) common SNPs across all four 

datasets for each density (1K, 3K, 5K, 10K, and 20K). 

Further, the study highlighted distinctive patterns of SNP 

commonality among datasets A, B, C, and D, emphasizing 

the genetic differentiation among Asian, exotic, and Indian 

sheep breeds. Utilizing the Frequent item Feature Selection 

(FIFS) method analysis depicted in Figure (1), 13 (0.32%), 

201 (1.67%), and 30 (0.15%) SNPs were identified as 

common across all four datasets at genomic densities of 1K, 

3K, 5K, 10K, and 20K, respectively. Moreover, 987 

(24.67%) SNPs were common in datasets A, B, and C, with 

the additional insight that 987 (24.67%) SNPs were 

exclusively common in dataset D at densities below 1K. 

Similarly, 2799 (23.32%) SNPs were shared among datasets 

A, B, and C, while these SNPs were exclusive to dataset D 

at densities below 3K. Notably, 415 SNPs were found 

common in datasets A, B, and C, with an additional 470 

SNPs common between datasets A, B, and D at the 5K 

density 

Imputation accuracy analysis demonstrated varying results 

across densities for each dataset. The imputation accuracy of 

the FIFS method for dataset A varied between 0.1300 and 

0.4293, 0.4917 to 0.5902, and 0.5614 to 0.6564 for densities 

of 1000, 3000, and 5000, respectively. The average 

imputation accuracy was highest for the 5K density at 

0.6124. For 1K and 3K densities, the average imputation 

accuracy was 0.3182 and 0.5476, respectively. In the 1K 

density, chromosome number 17 had the highest imputation 

accuracy, while chromosome number 26 had the lowest. In 

the 3K density, chromosome number 6 had the highest 

imputation accuracy, while chromosome number 21 had the 

lowest. In the 5K density, chromosome number 4 had the 

highest imputation accuracy, while chromosome number 26 

had the lowest. The selection of SNPs for 10000 and 20000 

densities in dataset A using FIFS failed, possibly due to the 

inability to choose common SNPs frequent in all breeds. 

Dataset A exhibited the highest average imputation accuracy 

at the 5K density (0.6124), with notable variations in 

imputation accuracy across chromosomes. Similar trends 

were observed in datasets B, C, and D, where the 5K density 

consistently yielded the highest average imputation 

accuracy. Notably, the failure of SNP selection for 10K and 

20K densities in datasets A, B, and D using the FIFS 

method pointed to potential challenges in capturing common 
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SNPs across diverse populations. The imputation accuracy 

for various densities of dataset A using the Frequent item 

Feature Selection (FIFS) method in the TRES program is 

presented in Table 1, with the corresponding graphical 

representation depicted in Figure (2). 

For dataset B, the imputation accuracy using the FIFS 

method ranged from 0.1067 to 0.3835, 0.4102 to 0.5699, 

and 0.4958 to 0.6346 for densities of 1000, 3000, and 5000, 

respectively. The highest average imputation accuracy was 

observed for the 5K density, reaching a value of 0.5855. For 

1K and 3K densities, the average imputation accuracy was 

0.2690 and 0.5120, respectively. The median imputation 

accuracy peaked at the 5K dataset with an estimate of 

0.5859, while it was 0.2826 and 0.5123 for 1K and 3K 

densities. Notably, chromosome 17 exhibited the highest 

imputation accuracy within the 1K density, while 

chromosome 6 and 4 showed the highest accuracy in the 3K 

and 5K densities, respectively. However, the selection of 

SNPs for 10,000 and 20,000 densities in dataset B using the 

FIFS method failed, likely due to the inability to choose 

common SNPs prevalent in all breeds. Table No.2 illustrates 

the imputation accuracy for different densities of dataset B 

while employing the FIFS method in the TRES program, 

with the graphical representation presented in Figure (3). 

Similarly, for dataset C, the imputation accuracy using the 

FIFS method ranged from 0.1051 to 0.4416, 0.4231 to 

0.6645, and 0.4231 to 0.6645 for densities of 1000, 3000, 

and 5000, respectively. The highest average imputation 

accuracy was observed for the 5K density, with a value of 

0.6126. The average imputation accuracy for 1K and 3K 

densities was 0.2842 and 0.6132, respectively. The median 

imputation accuracy peaked at the 5K dataset with an 

estimate of 0.6173, while it was 0.2936 and 0.6140 for 1K 

and 3K densities. Chromosome 17 exhibited the highest 

imputation accuracy within the 1K density, while 

chromosome 4 showed the highest accuracy in the 3K and 

5K densities. Similar to dataset B, the selection of SNPs for 

10,000 and 20,000 densities in dataset C using the FIFS 

method failed. Table No. 3 presents the imputation accuracy 

for different densities of dataset C while employing the 

FIFS method in the TRES program, with the graphical 

representation depicted in Figure (4). 

For dataset D, the imputation accuracy using the FIFS 

method varied from 0.1300 to 0.1067 to 0.3835, 0.4102 to 

0.5699, and 0.4958 to 0.6346 for densities of 1000, 3000, 

and 5000, respectively. The highest average imputation 

accuracy was observed for the 5K density, reaching a value 

of 0.5855. The average imputation accuracy for 1K and 3K 

densities was 0.2690 and 0.5120, respectively. The median 

imputation accuracy peaked at the 5K dataset with an 

estimate of 0.5859, while it was 0.2826 and 0.5123 for 1K 

and 3K densities. Chromosome 17 exhibited the highest 

imputation accuracy within the 1K density, while 

chromosome 6 showed the highest accuracy in the 3K 

density, and chromosome 4 showed the highest accuracy in 

the 5K density. Similar to datasets B and C, the selection of 

SNPs for 10,000 and 20,000 densities in dataset D using the 

FIFS method failed. Table No.4 illustrates the imputation 

accuracy for different densities of dataset D while 

employing the FIFS method in the TRES program, with the 

graphical representation presented in Figure (5). 

Across all datasets, the highest average imputation accuracy 

was consistently observed for the 5K density using the FIFS 

method. Notably, the discriminant SNP loci on ovine 

chromosomes 17, 6, 4, 15, 19, 12, and 8 exhibited superior 

imputation accuracy for various marker panels, providing 

valuable insights for cost-effective SNP assays in sheep 

breed assignment. The study's findings are expected to 

contribute to the development of low-cost genotyping 

methods for accurately assigning unknown animals to their 

true population of origin in diverse sheep breeds, with the 

potential to commercially reduce genotyping costs through 

the targeted genotyping of discriminant SNP loci. Vergara et 

al. (2014) [16] emphasise and explain the issues that call for 

feature selection techniques and reported feature selection 

methods in order to provide a state-of-the-art of feature 

selection methods with an implementation of mutual 

information feature selection framework. 

Kavakiotis et al. (2017) [10] used a dataset of 446 individuals 

divided into 14 sub-populations, genotyped at 59,436 SNPs 

in pig breed types found in the United Kingdom, and 

concluded that FIFS can surpass the assignment accuracy 

threshold of 95% while using half the number of SNPs, 

gives better results than other approaches, and can aid 

biologists in selecting the most informative markers with 

maximum discrimination power for cost-effect optimization. 

 
Table 1: Imputation accuracy of dataset A while employing FIFS 

method across different densities 
 

S. No. FIFS_A_1k FIFS_A_3k FIFS_A_5k 

OAR-1 0.3303 0.5565 0.6266 

OAR-2 0.3462 0.5769 0.6233 

OAR-3 0.3760 0.5642 0.6364 

OAR-4 0.3322 0.5746 0.6564 

OAR-5 0.3469 0.5421 0.5969 

OAR-6 0.3446 0.5902 0.6488 

OAR-7 0.3025 0.5247 0.5994 

OAR-8 0.3796 0.5437 0.6159 

OAR-9 0.3678 0.5371 0.6190 

OAR-10 0.3375 0.5490 0.6088 

OAR-11 0.3724 0.5875 0.6430 

OAR-12 0.3551 0.5682 0.6322 

OAR-13 0.3012 0.5734 0.6447 

OAR-14 0.4205 0.5450 0.5836 

OAR-15 0.2935 0.5384 0.5927 

OAR-16 0.3006 0.5621 0.6100 

OAR-17 0.4293 0.5783 0.6397 

OAR-18 0.2606 0.5325 0.6012 

OAR-19 0.3071 0.5527 0.6138 

OAR-20 0.2768 0.5433 0.6079 

OAR-21 0.2102 0.4917 0.5723 

OAR-22 0.2203 0.5645 0.6092 

OAR-23 0.3102 0.5016 0.6024 

OAR-24 0.3297 0.5101 0.5678 

OAR-25 0.2938 0.5109 0.6091 

OAR-26 0.1301 0.5207 0.5615 
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 Table 2: Imputation accuracy of dataset B while employing FIFS 

method across different densities 
 

S. No. FIFS_B_1k FIFS_B_3k FIFS_B_5k 

OAR-1 0.2651 0.5339 0.6119 

OAR-2 0.2961 0.5527 0.6170 

OAR-3 0.3481 0.5405 0.6300 

OAR-4 0.2861 0.5394 0.6347 

OAR-5 0.2942 0.5122 0.5896 

OAR-6 0.3399 0.5699 0.6202 

OAR-7 0.2413 0.5117 0.5820 

OAR-8 0.3577 0.5185 0.5848 

OAR-9 0.2367 0.5060 0.5847 

OAR-10 0.3047 0.5110 0.5925 

OAR-11 0.2826 0.5349 0.5891 

OAR-12 0.2826 0.4981 0.5878 

OAR-13 0.2883 0.5175 0.6120 

OAR-14 0.3729 0.5039 0.5788 

OAR-15 0.2426 0.5029 0.5608 

OAR-16 0.2563 0.5208 0.5802 

OAR-17 0.3835 0.5427 0.6186 

OAR-18 0.2115 0.5076 0.5840 

OAR-19 0.2065 0.5159 0.5997 

OAR-20 0.2597 0.5125 0.5765 

OAR-21 0.1335 0.4102 0.5307 

OAR-22 0.1678 0.5327 0.5840 

OAR-23 0.3485 0.4966 0.5871 

OAR-24 0.3097 0.4651 0.5143 

OAR-25 0.1731 0.4768 0.5777 

OAR-26 0.1067 0.4792 0.4959 

Table 3: Imputation accuracy of dataset C while employing FIFS 

method across different densities 
 

S. No. FIFS_C_1k FIFS_C_3k FIFS_C_5k 

OAR-1 0.3275 0.4231 0.4231 

OAR-2 0.2994 0.6551 0.6551 

OAR-3 0.3337 0.6606 0.6606 

OAR-4 0.3427 0.6646 0.6646 

OAR-5 0.2923 0.6112 0.6112 

OAR-6 0.3770 0.6510 0.6472 

OAR-7 0.2697 0.6402 0.6434 

OAR-8 0.3832 0.6113 0.6098 

OAR-9 0.3057 0.6264 0.6285 

OAR-10 0.2551 0.6358 0.6330 

OAR-11 0.2760 0.5958 0.5979 

OAR-12 0.2925 0.6187 0.6182 

OAR-13 0.2965 0.6309 0.6305 

OAR-14 0.3218 0.6064 0.6088 

OAR-15 0.2524 0.6600 0.6569 

OAR-16 0.2974 0.6494 0.6522 

OAR-17 0.4416 0.6155 0.6164 

OAR-18 0.2430 0.5931 0.5930 

OAR-19 0.2605 0.6285 0.6269 

OAR-20 0.2623 0.6126 0.6109 

OAR-21 0.1897 0.5985 0.6004 

OAR-22 0.1863 0.5917 0.5974 

OAR-23 0.3189 0.5920 0.5889 

OAR-24 0.2949 0.5668 0.5299 

OAR-25 0.1660 0.6021 0.6212 

OAR-26 0.1051 0.6025 0.6017 

 
Table 4: Imputation accuracy of dataset D while employing FIFS method across different densities 

 

S. No. FIFS_D_1k FIFS_D_3k FIFS_D_5k 

OAR-1 0.2986 0.5332 0.6290 

OAR-2 0.2998 0.5555 0.6233 

OAR-3 0.3187 0.5218 0.6115 

OAR-4 0.3694 0.5621 0.6332 

OAR-5 0.2638 0.5353 0.6378 

OAR-6 0.3215 0.5064 0.5923 

OAR-7 0.2699 0.5145 0.5984 

OAR-8 0.3360 0.5797 0.6483 

OAR-9 0.2246 0.5069 0.6117 

OAR-10 0.3263 0.5303 0.6252 

OAR-11 0.2857 0.4611 0.5777 

OAR-12 0.3761 0.5372 0.6115 

OAR-13 0.2595 0.4341 0.5454 

OAR-14 0.2437 0.4970 0.5705 

OAR-15 0.3665 0.5338 0.5969 

OAR-16 0.1591 0.5018 0.6168 

OAR-17 0.2721 0.5446 0.6047 

OAR-18 0.2827 0.5039 0.6235 

OAR-19 0.3917 0.5308 0.6156 

OAR-20 0.3550 0.5179 0.5706 

OAR-21 0.2431 0.4576 0.5521 

OAR-22 0.1791 0.4290 0.5514 

OAR-23 0.2383 0.5023 0.5868 

OAR-24 0.3038 0.4887 0.5699 

OAR-25 0.4299 0.5469 0.6108 

OAR-26 0.2328 0.4502 0.5432 
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Fig 1: The following Venn diagram represents the overlap of genetic data at the same genomic position. Venn diagram showing the total 

number of putative SNPs significantly associated with FIFS method. The total number of SNPs is reported in each panel. The 13, 201 and 30 

SNPs were common between datasets A, B, C and D. 

  

 
 

Fig 2: Imputation accuracy of dataset A via FIFS method 
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Fig 3: Imputation accuracy of dataset B via FIFS method 
 

 
 

Fig 4: Imputation accuracy of dataset C via FIFS method 
 

 
 

Fig 5: Imputation accuracy of dataset D via FIFS method 
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Conclusion 

This research provides a comprehensive understanding of 

SNP commonalities and imputation accuracy in different 

genomic densities for Asian, exotic, and Indian sheep 

breeds, and highlights the significance of the FIFS method 

in identifying common SNPs and underscores the challenges 

in imputing SNPs from low to high density. Insights into 

chromosomal variations affecting imputation accuracy 

contribute to refining genomic analyses, offering practical 

applications in breed-specific genomic research and 

breeding programs. The findings lay the foundation for the 

development of cost-effective SNP assays, facilitating 

accurate population assignments in sheep breeds. summary, 

this study explored Common Single Nucleotide 

Polymorphisms (SNPs) in datasets A, B, C, and D, revealing 

genetic variations among Asian, exotic, and Indian sheep 

breeds. Venn diagrams highlighted unique sets of common 

SNPs across different genomic densities, emphasizing 

distinctive genetic features within each dataset. The 

Frequent item Feature Selection (FIFS) method efficiently 

identified informative SNP patterns, emphasizing genetic 

differentiation among the populations. 

Imputation accuracy varied across densities, with Dataset A 

(Indian breeds) showing the highest average accuracy at 5K 

(0.6124). Challenges in SNP selection for 10K and 20K 

densities suggested difficulties capturing common SNPs, a 

trend observed in datasets B, C, and D. Chromosome-

specific analyses pinpointed discriminant SNP loci, offering 

opportunities for cost-effective SNP assays in sheep breed 

assignment. The result of our study can provide valuable 

information for developing a method in designing a low cost 

SNP assay for assigning unknown animals to their true 

population of origins in other sheep breeds. It is expected 

that the genotyping of 5K discriminant SNP loci selected 

from ~50000 SNPs, available on Illumina Ovine 

50KSNPBeadChip, will commercially decrease the cost of 

the genotyping.  

These findings provide valuable insights for developing 

low-cost genotyping methods, aiming to accurately assign 

unknown animals to their true population in diverse sheep 

breeds. The focus on discriminant SNP loci suggests a 

targeted approach for genotyping, potentially reducing 

commercial genotyping costs. The focus on discriminant 

SNP loci suggests a targeted approach for genotyping, 

potentially reducing commercial genotyping costs, research 

lays the groundwork for further investigations into 

optimizing SNP assays and advancing genetic studies in 

sheep breeding and population genetics. 
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