


ISSN Print: 2617-4693
 ISSN Online: 2617-4707
 IJABR 2024; SP-8(9): 214-217
www.biochemjournal.com
 Received: 26-06-2024
 Accepted: 27-07-2024

Rupali JS
 Ph. D Scholar, Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India

Vidya Madhuri E
 Ph. D Scholar, Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India

Karthick Mani Bharathi B
 Department of Sericulture, Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, India

Basavaraj N Hadimani
 Division of Entomology, ICAR-Indian Agriculture Research Institute, New Delhi, Delhi, India

Sabitha Chellem
 Ph.D. Scholar, Acharya N. G. Ranga Agricultural University, Agricultural College, Bapatla, Andhra Pradesh, India

Chandana HS
 Ph. D scholar, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, Delhi, India

Corresponding Author:
Karthick Mani Bharathi B
 Department of Sericulture, Forest College and Research Institute, Tamil Nadu Agricultural University, Mettupalayam, Tamil Nadu, India

Significant role of chemical signalling and associated compounds in insect-plant interaction

Rupali JS, Vidya Madhuri E, Karthick Mani Bharathi B, Basavaraj N Hadimani, Sabitha Chellem and Chandana HS

DOI: <https://doi.org/10.33545/26174693.2024.v8.i9Sc.2088>

Abstract

Chemical signalling plays a crucial role in the interactions between insects and plants, orchestrating a complex web of ecological and evolutionary dynamics. This abstract provides an overview of how chemical signals including volatile organic compounds (VOC's) and secondary metabolites which mediate these interactions. Plant's as stationary organisms which employ chemical signalling to defend against herbivores and attract beneficial insects such as predators and pollinators. In response, insects have developed sophisticated mechanisms to detect and interpret these signals thus influencing their behaviour and survival strategies. For instance, VOC's released by plants during herbivore attacks can alert neighbouring plants to bolster their defenses or attract natural enemies of the herbivores. Insects also use pheromones for communication, facilitates mating, foraging and group coordination. The evolutionary significance of these chemical interactions is profound *i.e.*, driving adaptations and counter-adaptations in both plants and insects. Recent advances in chemical ecology and molecular biology have enhanced our understanding of these processes thereby revealing new insights into the mechanisms underlying chemical signalling and its applications in pest management and conservation. Overall, chemical signalling is fundamental to the intricate and dynamic relationships between insects and plants thereby shaping their evolutionary trajectories and ecological interactions.

Keywords: Chemical signalling, behaviour, ecological interactions, insect-plant interaction, plant defences

1. Introduction

In ecological interactions, the relationship between insects and plants is distinguished by its complexity and depth, largely governed by the subtle mechanisms of chemical signalling. This intricate interplay reveals a world where stationary plants and mobile insects engage in a continuous chemical dialogue that significantly influences their mutual survival and evolutionary trajectories. Chemical signals, the molecules exchanged between these organisms were not incidental but central to their interactions thus facilitating communication, defense and exploitation strategies (Shree *et al.*, 2021) [25].

Plants as immobile organisms will face constant threats from herbivores and environmental stressors. To combat these challenges, they have evolved sophisticated chemical signalling systems (Singh *et al.*, 2016) [26]. For instance, when a plant is attacked by herbivores, it releases volatile organic compounds (VOC's) into the air. These VOC's serve a dual purpose as they can alert neighbouring plants to activate their own defensive mechanisms or attract natural predators and parasitoids that prey on the herbivores. This airborne communication enables plants to mount a collective defense thereby improving their chances of survival (Nishida *et al.*, 2014) [19].

In addition to VOCs, plants produce various non-volatile compounds and secondary metabolites that contribute to their defense strategies. Compounds like alkaloids, tannins and saponins can deter herbivores by making the plant toxic or less palatable (Bharathi *et al.*, 2024) [16]. For example, alkaloids can disrupt an insect's nervous system while tannins can bind to proteins thus reducing the plant's digestibility. These chemical defenses illustrate the ongoing evolutionary arms race between plants and herbivores with each side continuously adapting to the other's strategies. Insects have likewise developed their own chemical signalling systems to navigate this chemically rich environment (Singh and Singh, 2021) [28]. Pheromones, chemical signals released by one individual to influence the behaviour or

physiology of others of the same species which were crucial for insect communication. These signals can attract mates, coordinate group behaviours or mark territories. For instance, female moths release sex pheromones to lure males from afar while social insects such as ants and bees use alarm pheromones to rally their colonies in response to threats (Voelckel *et al.*, 2014)^[29].

Herbivorous insects have also evolved to detect and react to plant chemical signals. Some insects can identify plant species based on their chemical profiles thereby helping them select appropriate host plants for feeding or laying eggs (Sharma and Mishra *et al.*, 2021)^[24]. Additionally, certain herbivores have developed strategies to overcome plant defenses such as detoxifying harmful chemicals or avoiding plants with high levels of deterrents. This adaptability highlights the dynamic evolutionary exchange between plants and insects, where each continuously refines its chemical signalling strategies (Sharma *et al.*, 2021)^[24]. The evolutionary implications of chemical signalling in these interactions are significant. For plants, the ability to produce and detect chemical signals enhances their defense mechanisms, attracts pollinators and facilitates communication with other plants thereby boosting their survival and reproductive success. For insects, chemical signals provide vital information about their environment thus enabling them to locate resources, avoid dangers and interact with conspecifics effectively (Singh *et al.*, 2016)^[26]. Recent advances in chemical ecology and molecular biology have greatly expanded our understanding of these interactions. Researchers can now pinpoint specific compounds involved in plant-insect chemical signalling thus analyse their effects on behaviour and physiology and develop innovative pest management strategies (Nishida *et al.*, 2014)^[19]. For instance, knowledge of plant VOCs can be used to attract natural predators of pests while insights into insect pheromones can lead to the creation of more effective traps and repellents (Hu *et al.*, 2024). However, the complexity of these chemical interactions and the influence of environmental variables pose ongoing challenges in fully understanding and utilizing these systems. In essence, the role of chemical signalling in insect-plant interactions represents a fascinating and intricate aspect of ecological and evolutionary biology (Naorem and Karthi *et al.*, 2021)^[20]. Through a sophisticated chemical dialogue, plants and insects navigate a world of opportunities and threats thereby influencing each other's evolutionary paths. Understanding these chemical signals not only enhances our grasp of ecological dynamics but also offers practical insights for agriculture and conservation. As research progresses, the study of chemical signalling will remain central to uncovering the complexities of these dynamic ecological relationships (Felton *et al.*, 2008)^[9].

2. Complexity of Insect-Plant Interactions

Insect-plant interactions encompass a broad array of relationships, from mutualistic alliances to antagonistic confrontations between them. These interactions are pivotal in shaping ecological dynamics and evolutionary trajectories (Giron *et al.*, 2018)^[11]. Plants which were stationary by nature have developed various strategies to cope with the array of insects that might prey on them or seek to exploit them. In response, insects have evolved an array of mechanisms to either overcome plant defenses or benefit from plant resources. At the heart of this intricate interplay

lies chemical signalling which facilitates a diverse range of interactions (Afroz *et al.*, 2021)^[11].

3. Chemical Signalling in Plants

3.1. Basics of Plant Chemical Signalling

Plants utilize a myriad of chemical signals to interact with their environment including volatile organic compounds (VOCs), non-volatile compounds and secondary metabolites. These chemicals serve various functions, from defending against herbivores to attracting pollinators and facilitating communication among plants (Chadwick *et al.*, 2008)^[4].

3.1.1. Volatile Organic Compounds (VOCs)

VOCs are a primary mode of chemical communication in plants. These compounds are released into the air in response to biotic and abiotic stresses. They can serve multiple roles such as:

- **Herbivore Defense:** When attacked by herbivores many plants release VOC's that can deter the herbivore or attract natural enemies (predators or parasitoids) of the herbivore (Birkett *et al.*, 2010)^[2].
- **Pollinator Attraction:** Flowers produce specific VOC's to attract pollinators. These compounds are often species-specific thus ensuring that the plant attracts the appropriate pollinator (Kerchev *et al.*, 2012)^[14].
- **Intraspecific Communication:** VOC's can also signal neighbouring plants about potential threats thereby prompting them to activate their own defense mechanisms.

3.1.2. Non-Volatile Compounds and Secondary Metabolites

Non-volatile compounds and secondary metabolites are often involved in more localized or direct interactions. These include:

- **Tannins and Alkaloids:** These compounds can deter herbivores by making the plants palatable less or toxic.
- **Saponins and Flavonoids:** These substances can interfere with insect feeding or growth thus acting as chemical deterrents or repellents.

3.2. Plant Responses to Herbivores

When plants are attacked by herbivores, they often initiate a complex defense response involving the production of specific chemical signals (Poelman *et al.*, 2015)^[22]. Those responses can be categorized into direct and indirect defenses:

- **Direct Defenses:** These include the production of toxic compounds or physical barriers (e.g., thorns) that reduce herbivore feeding or survival.
- **Indirect Defenses:** These involve the release of VOC's that attract natural enemies of the herbivores. For example, some plants release compounds that attract parasitoid wasps which lay eggs in or on herbivorous insects.

4. Insect Responses to Plant Chemical Signals

4.1. Herbivore Adaptations to Plant Defenses

Insects have evolved considerably to cope up with the chemical defenses of plants (Schiestl *et al.*, 2010). These adaptations can include:

- **Detoxification:** Many herbivores have developed mechanisms to detoxify harmful compounds found in

their host plants.

- **Avoidance:** Some insects avoid plants with strong defenses by switching to less defended or alternative host plants.
- **Manipulation:** Certain herbivores can manipulate plant signalling pathways to reduce the effectiveness of plant defences (Zebelo and Maffei, 2012)^[30].

4.2 Chemical Communication among Insects

Insects also use chemical signalling for various purposes including:

- **Aggregation:** Some insects release pheromones to attract others to a feeding site or mating area.
- **Alarm Signals:** Many social insects release alarm pheromones to warn others of a threat thereby prompting a collective defensive response (Zu *et al.*, 2023).

4.3 Case Studies in Insect-Plant Chemical Interactions

Example 1: The Tomato Plant and Its Herbivores

The tomato plant (*Solanum lycopersicum*) is a classic example of plant-insect chemical interactions. When attacked by herbivorous insects like the tomato hornworm (*Manduca sexta*), tomatoes release specific VOC's such as green leaf volatiles (GLVs) and terpenes (Calatayud *et al.*, 2018)^[3]. These VOC's serve several functions:

- **Attracting Predators:** The released chemicals attract predatory insects like lacewings which prey on the hornworms (Checker and Sharma, 2021)^[24].
- **Repelling Herbivores:** The plant's response may include the production of deterrent compounds that make the plant less palatable (Chadwick and Goode, 2018)^[4].

Example 2: The Milkweed and the Monarch Butterfly

Milkweed (*Asclepias* spp.) and the monarch butterfly (*Danaus plexippus*) illustrate a mutualistic interaction involving chemical signalling. Milkweeds produce toxic cardenolides, which are sequestered by monarch larvae. This chemical defense not only protects the larvae from predators but also deters other herbivores (Dicke and Poecke, 2002)^[6]. The monarch's ability to tolerate these toxins allows them to use milkweeds as their primary food source and in turn they contribute to the plant's reproductive success by facilitating pollination (Douglas *et al.*, 2013)^[7].

5. Recent Advances and Future Directions

5.1. Advances in Chemical Ecology

Recent research has provided deeper insights into the molecular mechanisms underlying plant-insect chemical interactions. Techniques such as mass spectrometry and genetic engineering have allowed scientists to:

- **Identify Specific Compounds:** Researchers can now identify and quantify specific VOCs and secondary metabolites involved in plant-insect interactions (Frerot *et al.*, 2017)^[10].
- **Understand Receptor Mechanisms:** Advances in genomics and proteomics have enhanced our understanding of how insects detect and respond to plant chemicals at the molecular level (Dyer *et al.*, 2018)^[8].

5.2. Applications and Implications

Understanding chemical signalling in insect-plant

interactions has practical implications for agriculture and pest management (Jayanthi *et al.*, 2019)^[13]. For example:

- **Integrated Pest Management (IPM):** By utilizing knowledge of plant-insect chemical interactions, IPM strategies can be developed that reduce reliance on chemical pesticides (Bharathi *et al.*, 2024)^[16].
- **Biological Control:** The use of natural predators or parasitoids can be optimized by understanding the chemical signals that attract them to target pests (Hu *et al.*, 2024).

6. Challenges need to be addressed

Despite significant progress, several challenges remain that need to be addressed:

- **Complexity of Interactions:** The diversity of chemical signals and their effects on different organisms make it challenging to predict outcomes in natural ecosystems (Giron *et al.*, 2018)^[11].
- **Environmental Variability:** The influence of environmental factors on chemical signalling and interactions is an area requiring further study (Bharathi *et al.*, 2022)^[15].

7. Future prospects

- **Ecological Modelling:** Developing models to predict how changes in plant or insect chemistry affect ecological interactions (Jayanthi *et al.*, 2019)^[13].
- **Synthetic Biology:** Engineering plants with enhanced chemical defense or insect-resistant traits (Lakshmi *et al.*, 2020).

8. Conclusion

In conclusion, chemical signalling is a crucial element in the interactions between insects and plants, significantly influencing their ecological and evolutionary relationships. Plants utilize chemical signals such as volatile organic compounds (VOC's) and secondary metabolites to defend against herbivores and attract beneficial insects thereby including predators and pollinators. These signals enable plants to initiate defensive responses, communicate with neighbouring plants and bolster their survival and reproductive success. Insects in turn, have evolved sophisticated mechanisms to detect and interpret these chemical cues. Pheromones facilitate crucial behaviours such as mating and group coordination while the ability to respond to plant chemicals influences feeding preferences and host plant selection. The evolutionary interplay between plant defenses and insect adaptations illustrates a continuous arms race driven by chemical interactions. Recent advances in chemical ecology and molecular biology have enhanced our understanding of these complex interactions thus revealing specific compounds involved and their impacts on behaviour and physiology. These insights have practical implications for agriculture and pest management thereby offering opportunities for more sustainable and effective strategies. However, the complexity of chemical signalling and the influence of environmental factors has significant challenges. Future research will need to address these complexities, integrating ecological modelling and innovative technologies to better understand and manipulate these interactions. Ultimately, chemical signalling remains central to the intricate relationships between insects and plants, driving evolutionary change and ecological balance while offering valuable insights for applied solutions in pest

management and conservation.

9. References

1. Afroz M, Rahman M, Amin R. Insect plant interaction with reference to secondary metabolites: A review. *Agricultural Reviews*. 2021;42(4):427-433.
2. Birkett MA. The chemistry of plant signalling. *Plant Communication from an Ecological Perspective*; c2010 .p. 21-41.
3. Calatayud PA, Sauvion N, Thiery D, Rebaudo F, Jacquin-Joly E. Plant-insect interactions. *Ecology—Oxford Bibliographies*; c2018.
4. Chadwick DJ, Goode JA, editors. *Insect-Plant Interactions and Induced Plant Defence*. John Wiley & Sons; c2008.
5. Checker VG, Sharma M. Signalling during insect-plant interaction. *Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology*; c2021 .p. 193-214.
6. Dicke M, Van Poecke R. Signalling in plant-insect interactions: signal transduction in direct and indirect plant defence. In: *Plant Signal Transduction*. Oxford University Press; c2002 .p. 289-316.
7. Douglas AE. Microbial brokers of insect-plant interactions revisited. *Journal of Chemical Ecology*. 2013;39:952-961.
8. Dyer LA, Philbin CS, Ochsenrider KM, Richards LA, Massad TJ, Smilanich AM, et al. Modern approaches to study plant-insect interactions in chemical ecology. *Nature Reviews Chemistry*. 2018;2(6):50-64.
9. Felton GW, Tumlinson JH. Plant-insect dialogs: complex interactions at the plant-insect interface. *Current Opinion in Plant Biology*. 2008;11(4):457-463.
10. Frerot B, Leppik E, Groot AT, Unbehend M, Holopainen JK. Chemical signatures in plant-insect interactions. In: *Advances in Botanical Research*. Academic Press. 2017;81:139-177.
11. Giron D, Dubreuil G, Bennett A, Dedeine F, Dicke M, Dyer LA. Promises and challenges in insect-plant interactions. *Entomologia Experimentalis et Applicata*. 2018 May;166(5):319-343.
12. Hu C, Li YT, Liu YX, Hao GF, Yang XQ. Molecular interaction network of plant-herbivorous insects. *Advanced Agrochem*. 2024 Mar 1;3(1):74-82.
13. Jayanthi PD. Ecological chemistry of insect-plant interactions. *Journal of Eco-friendly Agriculture*. 2019;14(2):1-0.
14. Kerchev PI, Fenton B, Foyer CH, Hancock RD. Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. *Plant, Cell & Environment*. 2012 Feb;35(2):441-453.
15. Karthick Mani Bharathi B, Susikaran S, Parthiban KT, Chozhan K. The economics of commercial mulberry saplings production using mini clonal technology over conventional method. *Journal of Eco-friendly Agriculture*. 2022;11(7):1236-1241.
16. Karthick Mani Bharathi B, Susikaran S, Parthiban KT, Vasanth V, Vijay S. Influence of different transplanting days on yield attributes of mini clones under field conditions for *Morus indica* (V1). *Madras Agricultural Journal*. 2024;111(1):1-6.
17. Karthick Mani Bharathi B, Susikaran S, Parthiban KT, Vasanth V, Ashwin Niranjan M. Mass production of mulberry saplings generation using mini clonal technology: An innovative approach. *Journal of Eco-friendly Agriculture*. 2024;5(4):193-195.
18. Mithöfer A, Boland W, Maffei ME. Chemical ecology of plant-insect interactions. In: *Molecular Aspects of Plant Disease Resistance*. Wiley-Blackwell, Chichester; c2009.
19. Nishida R. Chemical ecology of insect-plant interactions: Ecological significance of plant secondary metabolites. *Bioscience, Biotechnology, and Biochemistry*. 2014 Jan 2;78(1):1-3.
20. Naorem AS, Karthi S. Ecology and evolution of insect-plant interactions. *Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology*; c2021 .p. 437-53.
21. Pincebourde S, Van Baaren J, Rasmann S, Rasmont P, Rodet G, Martinet B. Plant-insect interactions in a changing world. In: *Advances in Botanical Research*. 2017;81:289-332. Academic Press.
22. Poelman EH. From induced resistance to defence in plant-insect interactions. *Entomologia Experimentalis et Applicata*. 2015 Oct;157(1):11-17.
23. Schiestl FP. The evolution of floral scent and insect chemical communication. *Ecology Letters*. 2010 May;13(5):643-656.
24. Sharma AV, Mishra V. Simplified perspective of complex insect-plant interactions. *Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology*; c2021 .p. 399-415.
25. Shree P, Kumar M, Singh DK. Molecular and biochemical aspects of insect-plant interaction: a perspective for pest management. *Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology*; c2021 .p. 417-436.
26. Singh A, Singh S, Singh IK. Recent insights into the molecular mechanism of Jasmonate signalling during insect-plant interaction. *Australasian Plant Pathology*. 2016 Apr;45:123-133.
27. Sharma G, Malthankar PA, Mathur V. Insect-plant interactions: A multilayered relationship. *Annals of the Entomological Society of America*. 2021 Jan 1;114(1):1-6.
28. Singh IK, Singh A, editors. *Plant-Pest Interactions: From Molecular Mechanisms to Chemical Ecology*. New York, NY: Springer; c2021.
29. Voelckel C, Jander G, editors. *Annual Plant Reviews, Insect-Plant Interactions*. John Wiley & Sons; c2014.
30. Zebelo SA, Maffei ME. Signal transduction in plant-insect interactions: From membrane potential variations to metabolomics. In: *Plant Electrophysiology: Signalling and Responses*. Berlin, Heidelberg: Springer Berlin Heidelberg; c2012. p. 143-172.
31. Zu PJ, García-García R, Schuman MC, Saavedra S, Melián CJ. Plant-insect chemical communication in ecological communities: An information theory perspective. *Journal of Systematics and Evolution*. 2023 May;61(3):445-453.