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Abstract 

This paper explores the growing application of biosensors in animal health management, emphasizing 

the need for an integrated online monitoring system. As global population increases, the paper 

highlights the importance of adapting livestock agriculture with Precision Livestock Farming (PLF) 

technologies, focusing on biometric sensors, big data, and blockchain. Biometric sensors provide real-

time health and behaviour data, integrated through big data analytics for population-level insights. 

Blockchain ensures secure traceability of animal products, addressing concerns about disease outbreaks 

and enhancing consumer trust. The review discusses the advantages of wearable technologies such as 

biosensors techniques for detecting infectious diseases in cattle, poultry and swine. While PLF 

technologies hold promise, challenges like data privacy and technology validation need attention for 

widespread commercial feasibility. 
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1. Introduction 

As the global human population increases, upto 2050, the projected global human population 

is over 9 billion which is approximately 2 billion more than the current population (FAO, 

2011) 6. This population growth occurs primarily in developing countries, India is one of the 

leading developing country throughout the world. So the development in these countries and 

increasing population will create an increased demand for animal products. India’s total 

livestock population is 535.78 million which provides stable food sources, employment and 

opportunities for increased income. Much of the demand for animal products will be met by 

local production. However, despite the increasing population and demand for animal product, 

consumers are becoming more aware about the negative impact of livestock farming on the 

environment, human health, and animal welfare (Ochs D.S. et al. 2018) [13]. Land and water 

will become increasingly competitive resources, meaning livestock producers will become 

increasingly competitive resources, meaning livestock producers will need to maximize 

production while employing their limited resources sustainably (Baldi A., et al. 2017) [1]. 

Digitalization will help to achieve these goals. To meet the growing demand for animal 

protein while addressing concerns about environmental sustainability, human health, and 

animal welfare, farmers and animal scientists may rely increasingly on PLF, Artificial 

intelligence, GIS and IoT technologies to digitalize livestock farming. This review paper 

focuses on various technologies - mainly biometric sensors, big data, and blockchain 

technology - that can help farmers increase production while addressing environmental 

sustainability and consumer concerns. 

 

1.1 Recent trends in livestock farming 

Over the past ten years, significant advancements have been made in waste management, 

automated feeding systems, milking robots, and instrumentation, as well as in increasing 

production efficiency through genetics, animal breeding, and nutrition. Even with these 

advancements, there are still big problems. To satisfy the growing demand for animal 

products, intensive livestock management is required; yet, because livestock housing is small 

and congested, it is challenging for farmers to closely monitor animal health and welfare. As 

a climate change livestock animals will be more susceptible to illness, heat stress, and other 

health problems (U. Bernabucci, 2019) [50]. As a result, there will be more pressure to 

recognize health problems and disease outbreaks early on, comprehend how diseases spread,  
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and take preventative action to stop significant economic 

losses (S. Neethirajan, 2017) [17]. These problems, as well as 

escalating concerns over animal welfare, transparency, and 

environmental sustainability, have led to growing interest in 

digitalizing livestock farming with PLF, Artificial 

intelligence, GIS and IoT technologies. 

 

1.1.1 Artificial Intelligence  

Artificial Intelligence (AI) technology play vital role in 

livestock production to solve animal welfare and health 

related problems, so as to achieve good economic benefits 

(Figure 1). AI used to solve the main concerns (i.e., costs 

and disease) and to improve animal production efficiency. 

AI focus on the quality of animal care as well as the state of 

animal welfare are considered as the effective ways to 

achieve an optimal and sustainable livestock farming. To 

some extent, it is not easy to achieve good animal welfare 

that covers with various condition of health, safety, 

behavioral and emotional expression with traditional 

measures. Fortunately, the emerging AI technology are 

sought to have the potential to cope with and improve 

animal welfare for improving production performance in 

animal farming (Alves et al., 2021) [9]. 

Numerous studies on sensors, data processing and 

transmission, artificial intelligence (AI) models of machine 

learning (ML), deep learning (DL), artificial neuro networks 

(ANN), etc., have been conducted recently in an effort to 

address issues with animal identification, behavior detection 

(Riaboff et al., 2022) [42], disease monitoring (Vonk et al., 

2021) [54]. 

 

 
 

Fig 1: Use of artificial intelligence in livestock farming 

 

1.1.2. Internet of Things (IoT) 

The Internet of Things has the potential to revolutionize the 

livestock farming industry by improving efficiency, 

reducing costs and increasing productivity. IoT plays an 

Important role in providing innovative solution to 

revolutionize the agriculture and farming sectors (Figure 2) 

(Vijay Rana et al. 2023) [41]. Principle of IoT including 

uniquely determining interconnected devices, extracting the 

data from sensors and storing it in base station, which is 

used by machine learning algorithms to achieve advance 

goals. It also used location monitoring technology to record 

the movement of animals and indicate signals when they 

interrupt the boundary of the sensors of the farm and 

determine the animal health and wellbeing of farm animals 

(Parisa Niloofar et al. 2021) [37].  

Traditional farming is changing due to the increasing growth 

of IoT in livestock farming, which not only makes it more 

cost-effective but also uses intelligent technology to help 

farmers reduce crop waste. Important improvements in the 

last few years include machine-assisted milking, automated 

feeding, and optimizing production efficiency through 

nutrition, instrumentation, and animal health monitoring. 

Significant obstacles still exist in spite of this progress. To 

meet the increasing demand for animal products, intensive 

livestock farming is necessary. However, because cattle live 

in cramped, confined spaces, housing makes it difficult for 

farmers to closely identify and monitor animal health. These 

problems prompt the goal of identifying health and disease 

outbreaks at an early stage, figuring out how diseases 

spread, and taking preventative measures to avoid huge 

level economic losses. 

 

1.1.3 Geographical Information System  

Spatial analysis and asset mapping play a vital role in 

livestock farming by providing insights into optimal use of 

land, resource allocation, and infrastructure planning. By 

understanding spatial patterns and relationships, farmers can 

increase productivity, ensure efficient utilization of 

resource, and improve animal welfare in their operations. 

GIS offers a comprehensive and reliable solution for 

generating precise and comprehensive maps of 

infrastructure in the livestock farming. This includes various 

livestock production assets such as veterinary hospitals, 

animal breeding centers, AI centers or semen stations, 

distribution centers for fodder seeds, pasture lands, livestock 

markets, cattle fairgrounds, and laboratories for feed 

analysis, quality control, and disease identification. 
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Fig 2: Multi-layer smart Internet of Things (IoT) approach for livestock management (Vijay Rana, 2023) [41] 

 

2. Biometric sensors 

Biometric sensors play crucial role in management of 

animal health. When the biosensors constructed accurately 

and utilized appropriately, these tools help diagnose animal 

illnesses quickly, hence reducing financial losses. These are 

especially helpful for farms that raise poultry and dairy 

cattle. Reliable data regarding the physical status of the 

animals can be obtained using on-site sensors, rather than 

depending exclusively on the farmers' senses and expertise. 

Owing to their outstanding performance, sensors have the 

potential to revolutionize livestock growth and are poised to 

emerge as one of the most significant and useful 

technologies in the animal health sector (Neethirajan, 2017) 

[17].  

Farmers are able to evaluate an animal's health and welfare 

over time by using biometric sensors to track the 

physiological and behavioral characteristics of their 

livestock (Neethirajan, 2017) [17]. The vast array of biometric 

sensors that are currently available are both invasive and 

non-invasive. Surveillance cameras and feed system sensors 

are examples of non-invasive sensors that can be placed 

throughout the barn to track animal weight and feed intake. 

Noninvasive sensors can also be easily affixed on animals, 

such pedometers, activity sensors based on 

microelectromechanical systems (MEMS) and the global 

positioning system (GPS), which can be used to track 

behavior (Helwatkar et al. 2014) [3]. Less frequently 

researched in cattle, invasive sensors are usually ingested or 

implanted in animals. These sensors are helpful for tracking 

internal physiological parameters like body temperature, 

rumen health, and vaginal pressure in dairy cow. 

The livestock sector has adopted the use of biometric sensor 

technology to give accurate, unbiased measurements of 

animal health and welfare while monitoring a greater 
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number of animals with fewer personnel and longer contact 

times (Helwatkar et al. 2014, Neethirajan, 2017) [3, 17]. 

Sensors collect data, which is subsequently analyzed by 

algorithms sets of instructions or calculations that are 

carried out in a sequential manner to address certain 

problems and stored in databases. Biologically relevant 

information, such as the amount of time animals spend 

engaging in a given behavior on a given day or the 

variations in activity level over specified time periods, is 

obtained through the processing of raw sensor data by 

specialized algorithms when using livestock biometric 

sensors (Benjamin and Yik, 2019) [30]. Additionally, these 

sensors can track animal activities within predetermined 

parameters and notify farmers when an animal exhibits 

anomalous behavior, enabling them to check the condition 

of animal and respond appropriately to improve health and 

welfare (Neethirajan, 2017) [17]. Combining biometric 

sensors with big data analytics, artificial intelligence, and 

bioinformatics technologies, such as those used in 

genomics, could identify animals with desirable qualities 

and select them for breeding programs (Ellen E.D. et al. 

2019) [15].  

Over the next ten years, it is expected that the usage of 

biometric sensors in animal health and livestock production 

would rise (Neethirajan, 2017) [44]. This is because of their 

considerable advantages in terms of precision, real-time 

output, and the volume of data they can gather. Early 

information gathering about animal wellbeing facilitates 

early intervention and frequently reduces the need for 

additional interventions. One non-invasive method of 

monitoring body temperatures instead of using invasive 

thermometers that need handling and restraining of animals 

is thermal infrared (TIR) imaging. In comparison to 

conventional methods, TIR of the eye region and general 

skin temperature can monitor stress and diagnose sickness 

4-6 days earlier (Koltes J. E. et al. 2018) [22]. This allows for 

quick treatment and reduces the risk that illness will spread 

throughout flocks. sickness 4-6 days earlier (Koltes J. E. et 

al. 2018) [22]. This allows for quick treatment and reduces 

the risk that illness will spread throughout flocks. The most 

widely used non-invasive sensors for tracking livestock 

animals are radio-frequency identification systems, 

accelerometers, and thermometers. cameras, microphones, 

and (RFID) tags. These enable farmers to keep a close 

watch on the barn's temperature, activity level, noise levels 

(such as vocalizations, coughing, and sneezing), and 

particular behaviors such as pig aggression. (Benjamin and 

Yik, 2019) [30]. 

Measuring stress in animals before slaughter, thermometers 

and physiological sensors (e.g., TIR and heart rate monitors) 

can be compared with meat quality measures to enhance the 

uniformity and consumer products' quality (Jorquera M. et 

al. 2019) [34]. Researchers may compare individual reactions 

among animals, measure how the heart rate changes over 

time in response to various stressors, and detect changes in 

the heart rate in real time in response to both positive 

(eustress) and negative stressors with the use of biometric 

sensors. In a pig investigation, heart rate was raised for one 

minute after a loud noise due to a negative stressor. A towel 

to play with served as a positive stressor that also raised 

heart rate for two minutes after it was given. More 

traditional or indirect measures of welfare may not be able 

to detect these subtle differences (Joosen P., et al. 2019) [38].  

An increasing number of livestock farmers are using RFID 

devices which can be implanted subcutaneously or attached 

in ear tags and collars to track a range of behaviors, 

including general activity, eating, and watering 

(Neethirajan, 2017) [44]. By employing microphones to 

record vocalizations and coughs, acoustic analysis can 

detect welfare concerns in farmers before they increase. The 

ability to quietly and easily install microphones in barns to 

keep watch on big herds of animals is another benefit of 

using them (Mahdavian, et al. 2020) [5]. In a similar vein, 

cameras are simple to install in barns and can record a 

multitude of useful data. Changes in an animal's posture that 

could be a sign of lameness or other morbidities can be 

identified using algorithms for video pictures (Jorquera M., 

et al. 2019) [34]. Analyzing camera images enables tracking 

of an animal's weight, walk, water intake, unique identity, 

and aggression (Norton, et al. 2019) [49]. 

Another rapidly expanding field of interest in automated 

animal welfare monitoring is facial identification 

technology. Machine learning computer algorithms are used 

by facial detection technologies to identify individual 

animals based on their facial traits or to track change related 

to emotional states (Marsot, et al. 2020) [35]. In order to 

assist stockpeople in properly monitoring animals' affective 

states, including pain, a number of animal welfare 

researchers are creating "grimace scales" for animals 

(Viscardi A. V., et al. 2017) [8]. Oftentimes, castration, 

dehorning, and tail docking are uncomfortable treatments 

performed on livestock animals (Viscardi A. V., et al. 2017) 

[8]. Animal behavioral intent can be ascertained with 

sufficient specificity using facial expression analysis. Pigs 

that initiate violence and those that retreat or avoid it have 

been observed to have distinct facial characteristics 

(Camerlink, et al. 2018) [19]. Additionally, facial recognition 

has been suggested as a less expensive substitute for RFID 

tags for individual animal identification (Marsot, et al. 

2020) [35]. 

Every type of livestock has specific needs for welfare as 

well as particular challenges. As such, farming applications 

involving biometric sensors or the combination of numerous 

sensors will always be species-specific. Therefore, it is 

advantageous to consider the role of biometric sensors in 

each of the main livestock categories. 

 

2.1 Biometric sensors for cattle 

Biometric and biological sensors have made regular 

husbandry activities easier, improved monitoring of 

significant welfare problems possible, and provided 

insightful data for the cattle farm into measures for 

productivity. While general activity, affective state, estrus 

detection, and milking behavior are productivity measures 

that have been researched for automation, mastitis, cystic 

ovarian disease, lameness, displaced abomasum, and ketosis 

are welfare concerns that can be improved through the use 

of biometric sensors (Helwatkar, et al. 2014) [3]. 

Farmers face distinct husbandry challenges while dealing 

with animal. A herd's total profitability can be influenced by 

a variety of circumstances, and individual animals represent 

a valuable investment. Capacity to quantify the accurately 

timing the onset of the reproductive cycle (estrus) and 
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monitoring the outcomes in real time is crucial for 

maintaining the health of the herd, while effectively 

managing nutrition and energy content is necessary to 

optimize milk yield. There has been special attention in the 

use of biometric sensors to identify estrus. A recent study by 

Rottgen, et al. (2020) [52] investigated automated detection 

and identification of a single cow's vocalizations within the 

herd, with reported sensitivity at 87% and specificity at 

94%, as a potentially functional method for monitoring 

dairy cows. Pedometers have shown some success for dairy 

cows (Helwatkar, et al. 2014, Rottgen, et al. 2020) [3, 52]. 

Dairy cattle need proper nutrition and energy balance in 

order to produce milk effectively. Non-esterified fatty acid 

(NEFA) levels that are in the bloodstream suggest a 

negative energy balance and may be a sign of serious health 

issues that require prompt attention. Metabolic conditions, 

high blood levels of NEFA can cause immune system 

malfunction, decreased milk supply, loss of appetite, 

reproductive problems, and mammary gland infections. 

Currently under development, biosensors that measure 

NEFA could prove to be quite beneficial for dairy farms 

(Tuteja S. K., et al. 2017) [46]. 

A major health risk for dairy farms is ketosis, which is 

frequently accompanied by high betahydroxybutyrate 

(BHBA) levels. Weng et al. (2015) [57] created a biosensor 

sensor based on quantum dots that can detect this. A 

different strategy was used by Tuteja et al. (2017) [48] with 

2D BHBA detection in dairy cattle using MoS2 

nanostructure-based electrochemical immunosensors. This 

approach proved reliable, demonstrated good specificity and 

sensitivity, and was on par with kits sold in stores. 

Furthermore, Veerapandian and colleagues (2016) [36]. 

MooMonitor is a wearable biometric sensor designed to 

assess dairy cow grazing behavior; thus far, it has shown a 

strong correlation with conventional techniques for 

observation (Werner, et al. 2019) [21] It has been proved that 

biometric sensors may monitor cattle's water intake. Using 

accelerometers and RFID tags, Williams et al. (2020) [29] 

found that animal behavior patterns could be classified with 

95% accuracy. Robotic milking systems for dairy calves 

have demonstrated how sensor technology can replace some 

animal husbandry activities, thereby granting animals a 

degree of autonomy. Wearable sensors on the cow are used 

by robotic milkers to record her dietary requirements and 

milking habits (Neethirajan, 2017) [44]. In the dairy farming, 

these milkers are growing in popularity since they enable 

remote monitoring of cattle health (Klerkx, et al. 2019) [27]. 

Concerns among consumers over the environmental 

sustainability of livestock production particularly with 

regard to cattle are growing. One example of a mitigation 

strategy is the investigation of biometric sensors as a means 

of tracking methane emissions (Munoz-Tamayo, et al. 2019) 

[40]. 

 

2.2 Biometric sensors for poultry farming 

The transmission of illness is a serious concern in the 

production of poultry. Pathogens can spread rapidly between 

farms and among birds. Additionally, poultry needs much 

more precise temperature control than the cattle that has 

been discussed thus far. This is done to support the right 

conditions for the embryonic development of chicks as well 

as to maintain the health of adult birds (Andrianov E. A., et 

al. 2019, Phuphanin A., et al. 2019) [14, 7]. Poultry farming 

therefore depends heavily on quick decisions and real-time 

data analysis two major benefits of the sensor technology 

employed in PLF. 

PLF sensing platforms and components have the capacity to 

measure temperature in animal habitats and notify farmers 

when necessary to take appropriate action. Apart from 

impacting the development of chicken embryos, In broilers, 

temperature is also the main cause of heat stress (Bloch V., 

et al. 2019) [51]. When compared to implanted temperature 

loggers, infrared thermometers have been shown to monitor 

broiler body temperatures with a high degree of precision 

(Bloch V., et al. 2019) [51]. Non-invasive heart rate monitors 

have been used to track the temperature during incubation 

(Andrianov E. A., et al. 2019) [14] and find circulatory 

abnormalities in chicken embryos (Khaliduzzaman A., et al. 

2019) [4]. Farmers may easily monitor the heart rate of 

embryos using smartphone apps that are compatible with 

sensors. This enables them to take necessary action to 

prevent embryo loss during incubation (Phuphanin A., et al. 

2019) [7] (Figure 3). Similar to swine, one significant way 

that sensors can offer crucial information regarding the 

welfare of chickens is through sound analysis. 

The vocalizations of chickens may indicate problems with 

thermal comfort, social growth, sickness, pecking of the 

feathers, or disruptions (Mahdavian A., et al. 2020, Du X., 

et al. 2020) [5, 56]. Hens have a characteristic diurnal pattern 

for their vocalizations (Du X., et al. 2018) [56]. Abnormal 

diurnal patterns or an increase in vocalizations inside a barn 

can be utilized to identify stress in hens, particularly stress 

related to discomfort with the heat (Du X., et al. 2020, Du 

X., et al. 2018) [56, 55]. According to recent study, monitoring 

chicken vocalizations with machine learning is a dependable 

method of noninvasively monitoring welfare and early 

warning sign detection (Du X., et al. 2020) [56]. It is possible 

to track the amount of grain that chickens and turkeys 

(Nasirahmadi A., et al. 2020) [6] are getting by analyzing 

their pecking sounds. One might employ sneeze detection to 

monitor respiratory illness (Carpentier L., et al. 2019) [26].  

A research investigation by Liu and colleagues (2020) [28] 

examined coughing and body condition scores for a group 

of broiler chickens; vocalizations made when suffering from 

respiratory disease and reported 93.8% classification 

accuracy. Studies have shown that voice activity detection 

algorithms can distinguish between healthy and sick 

chickens by extracting animal vocalizations from ambient 

noise (Mahdavian, et al, 2020) [5]. Detection accuracy was 

lower for chickens with respiratory illness than for healthy 

birds, at 72% and 95% respectively. Two factors that 

increased errors in sound detection were age and onset of 

illness. An explanation for the decreased accuracy of 

vocalizations for sick chickens is that respiratory disease 

caused abnormal vocalizations. 
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Fig 3: Health indicating parameters and biomarkers measured by biosensors in a Poultry farm (Corkery G., et al. 2013) [12] 

 

2.3 Biometric sensors for swine farming 

Lameness, hostility in animals kept in groups, physical 

condition, and health problems like prolapse and disease are 

some of the major welfare problems in the swine industry. 

proactive handling of animal, such as Concern over the 

verification of high welfare standards is growing among 

both producers and consumers (Buller H., et al. 2018) [18] 

Currently, biometric sensors are being utilized for managing 

behavioral problems in animals as well as to enhance their 

health and welfare Currently, 2D and 3D cameras, 

microphones, accelerometers, radio frequency identification 

(RFID), thermal imaging, and facial recognition are among 

the technologies frequently used in swine farming. 

Pig vocalizations and coughs can be distinguished from one 

another using acoustic detection technology (Friel M., et al. 

2019) [32]. Using sound detection software in a barn would 

assist farmers in recognizing welfare concerns like hostility, 

biting of the tail, heat stress, and respiratory infection. 

Farmers and veterinarians can diagnose respiratory 

infections up to two weeks ahead of time when using 

acoustic analysis to detect coughing, as opposed to using 

sensors alone. Additionally, sound analysis can differentiate 

between coughs, such as those of pigs suffering from 

respiratory diseases or those of a healthy pig with mild dust 

irritation (Norton T., et al. 2019) [49].  

A pig's unique vocalizations can be used to determine their 

psychological condition Pigs (Friel M., et al. 2019) [32] will 

scream, for example, when they are in pain or distressed, 

perhaps from being bit on the tail or ears, or from being 

crushed in the farrowing crate. Symbols of good health are 

becoming more and more common as those who care about 

animals try to give them happy environments instead of just 

removing painful and stressful situations from their lives. 

For instance, pigs will bark to warn of impending danger, 

but they will also do so when they are playing, so this 

behavior can also be interpreted as a sign of good health 

(Norton T., et al. 2019) [49]. According to Friel et al. (2019) 

[32], pig vocalization duration is a significant predictor of 

affective state (Friel M., et al. 2019) [32] particularly longer 

grunts, were employed in adverse, whereas shorter duration 

vocalizations were more common in situations of positive 

valence.  

Aggression among pigs kept in groups is a significant 

welfare concern in the swine farming. In order to track and 

manage aggressiveness concerns, researchers are looking 

into the use of automated video surveillance and tracking of 

depth imaging. While individual behavioral patterns cannot 

currently be tracked by these technologies, overall activity 

patterns may usually be observed (Wurtz K., et al. 2019) [25]. 

Other researchers are using a different strategy to figure out 

how to act reduce violence, such as figuring out hours of 

capture of pigs fighting. To effectively interpret violence in 

videos, automated detection systems and image analysis are 

being investigated (Norton T., et al. 2019) [49]. It is hoped 

that future studies would combine and integrate thermal 

imaging and motion tracking to identify hostility and 

lameness in sows (Benjamin and Yik, 2019) [30]. 

 

3. Blockchain Technology 

A blockchain is a distributed, decentralized database of 

encrypted transactions in which every transaction generates 

a node. Based on agreement from involved parties (peers), 

these nodes are arranged into records known as "blocks," 

and blocks are connected by a distinct code. codes, creating 

a series. Every time a new transaction occurs, a new node is 

instantly constructed to add to the blockchain with that 

transaction's information (Chattu, et al. 2019) [53]. 

Blockchain technology is built around four fundamental 

pillars: freedom, immutability, transparency, and 

distribution. This implies that in livestock husbandry, each 

animal on the farm needs to have a special identifier given 

to it. to collect the data on the farm so it has lived in, the 

transportation used to convey the animal from the farm(s) to 

the slaughterhouse. 

The detection and tracking of animal disease outbreaks, like 

the swine flu H1N1, the foot-and-mouth and mad cow 

diseases in Europe, the avian influenza (Lin J., et al. 2018) 

[20], and the recent rise in salmonella outbreaks (Dyda A., et 

al. 2020) [2], could be significantly assisted by blockchain 

technology. Additionally, customers are Concerns about the 

sustainability and morality of livestock farming are growing, 

and people are calling for transparency in the treatment of 

animals bred for food. Consumers are also particularly 

concerned about food safety because, according to the 

World Health Organization, 1 in 10 people have a disease 

related to food every year and over 420,000 people pass 

away. 
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Fig 5: Livestock supply chain depicting origin, storage, and flow of information as the animal products move from the farm and through 

processing and distribution channels to consumers (Neethirajan and Kemp, 2021) 

 

4. Big data analytics and machine learning 

Large volumes of data are produced when biometric sensors 

and biosensors are used to monitor the health and welfare of 

cattle; these data must be processed and evaluated in order 

to offer insightful information for livestock monitoring. Big 

data analytics, or the collection and examination of 

enormous, complicated data sets, has advanced as a result 

(Wolfert S., et al. 2017) [45]. Big data are defined as 

collections of data that have a lot of variables or predictors, 

making them messy and unsuitable for standard statistical 

methods, and a lot of rows and columns, making it 

impossible to visually evaluate the data (Morota G., et al. 

2018) [17]. Four essential characteristics, referred to as the "4 

Vs" model, define big data: (i) volume, or the amount of 

data; (ii) velocity, or the rate at which the data is accessed or 

used; (iii) variety, the different forms of the data; and (iv) 

veracity, cleaning and editing the data (Wolfert S., et al. 

2017, Koltes, et al. 2019) [45, 23]. 

It is possible to separate sensor data into two categories: 

environment-oriented data and animal-oriented (phenotype) 

data. It is important to monitor these two categories of data 

at the same time since both impact on the production and 

wellness of animals. Utilizing data pertaining to animals and 

the environment to digitalize livestock agriculture has the 

potential to enhance greenhouse gas emissions, nutrition, 

genetics, reproduction, welfare, and general health 

management (Pineiro C., et al. 2019) [11]. 

The implementation of precision livestock farming 

necessitates the appropriate utilization of big data analytics 

and modeling to provide management with insights into 

animal health and welfare concerns related to decreasing 

productivity trends, reproductive status, and nutritional 

requirements. Big data models gather data from sensors, 

interpret it, and look for anomalies in the information that 

might be influencing the animals. Large-scale data models 

enhance the effectiveness of sensor technology by filtering 

through to produce useful output for farms, such as the 

possibility of predicting future events, enhancing farmer 

response and decision-making, and possibly even enabling 

farmers to group animals according to needs, resulting in 

increased resource utilization (Koltes, et al. 2019) [23]. 

Predictive and exploratory data modeling are the two main 

categories. Exploratory models utilize data from previous 

events and determine which factors were influential, 

whereas predictive models utilize information to forecast 

future events according to specific standards (Sasaki, 2019) 

[58]. When utilizing large data sets, proper data modeling is 

crucial because of the unpredictability in the data, which 

implies that many variables must be taken into consideration 

in the models and that noise must be removed from the data 

by cleaning (Koltes, et al. 2019) [23]. Farmers may 

implement a more proactive management strategy and 

forecast future results by using predictive models (Wolfert 

S., et al. 2017, Koltes, et al. 2019) [45, 23]. 

The branch of artificial intelligence known as "machine 

learning" makes use of statistical inference and prediction 

algorithms (Morota G., et al. 2018) [17]. Similar concepts are 

used in data mining, but the emphasis is on teaching 

databases to recognize patterns in order to provide 

information. The use of machine learning (ML) as a 

Precision livestock farming is becoming more and more 

interested in big data because it enables computer 

algorithms to learn from sensor huge data sets and enhance 

themselves based on that learning, doing away with the need 

for human data analysts (Benjamin and Yik, 2019) [30]. 

By establishing contact networks and identifying high-risk 

people, big data technology can also be effective in tracking 

the spread of disease (Vanderwaal, et al. 2017) [24]. Big data 

analytical technology prediction models can be utilized to 

create digital agricultural service systems that may increase 

the capacity for animal production based on information 

from biological and biometric sensors. Output as well as the 

welfare of the animals. For instance, the MooCare predictive 

model was created to help dairy producers manage dairy 

farming by predicting milk production through the 

integration of big data and Internet of Things (IoT) sensors 

(Rosa Rghi, et al. 2019) [39]. Big data sets have been used to 

create models that have been used to identify and forecast 
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chicken diseases (Gulyaeva, et al. 2020) [33]. A digital 

fingerprint that may be used in predictive and adaptive 

decision-making models is created by combining digital 

data from the animals' wearable sensors and livestock 

husbandry sensing platforms (Figure 6). 

In animal genetics research, machine learning (ML) 

approaches are widely employed for genotyping imputation, 

outlier detection in populations, and phenotypic prediction 

based on genotypic information. Also, ML has been applied 

to image processing to determine body weight, automated 

milking systems on dairy farms to identify mastitis, and 

microbiome health monitoring (Morota G., et al. 2018) [17]. 

Big data analytics and machine learning have the potential 

to raise dairy cattle's health and efficiency. In dairy cattle, 

they can be used to track and forecast the risk of lameness 

and mastitis. Circumstances being very urgent welfare 

concerns that may severely impact milk production 

(Ebrahimi, et al. 2019) [31]. 

 

 
 

Fig 6: Big Data for Animal Farming (Neethirajan and Kemp, 2021) 

 

5. Conclusion 

It may be concluded that recent advancements in precision 

livestock farming (PLF) technologies have garnered 

significant attention due to their potential to enhance animal 

production efficiency while addressing crucial consumer 

concerns regarding animal welfare, environmental 

sustainability, and public health. Key components of these 

technologies include biometric and biological sensors, big 

data analytics, and blockchain technology. Biometric and 

biological sensors enable real-time monitoring of animal 

health and welfare parameters, facilitating proactive 

management strategies to ensure a sustainable and safe food 

supply. Big data analytics processes the vast amount of 

sensor data into actionable insights for farmers, optimizing 

decision-making processes. Blockchain technology renders 

livestock agriculture more and more transparent and 

traceable, increasing consumer trust with improving food 

safety.  
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