

ISSN Print: 2617-4693
 ISSN Online: 2617-4707
 NAAS Rating (2026): 5.29
 IJABR 2026; SP-10(1): 175-180
www.biochemjournal.com
 Received: 07-10-2025
 Accepted: 10-11-2025

Mutum Romila Devi
 IFC Block Anchor under
 MSRLM Yairipok, Imphal
 East, Manipur, India

AK Chaurasiya
 Assistant Professor.
 Department of Horticulture,
 NEHU, Tura Campus,
 Meghalaya, India

Amy D Shira
 Technical Expert under
 Simsanggre Soil and Water
 Conservation Department,
 Meghalaya, India

Pragya Uikey
 Department of Vegetable
 Science, College of Agriculture,
 O.U.A.T. Siripur,
 Bhubaneshwar, Odisha, India

Soumadeep Putatunda
 Department of Vegetable
 Science, College of Agriculture,
 O.U.A.T. Siripur,
 Bhubaneshwar, Odisha, India

Ananya Mishra
 Department of Vegetable
 Science, College of Agriculture,
 O.U.A.T. Siripur,
 Bhubaneshwar, Odisha, India

Corresponding Author:
Soumadeep Putatunda
 Department of Vegetable
 Science, College of Agriculture,
 O.U.A.T. Siripur,
 Bhubaneshwar, Odisha, India

Studies on standardization of frozen green pea and evaluation of its quality attributes

Mutum Romila Devi, AK Chaurasiya, Amy D Shira, Pragya Uikey, Soumadeep Putatunda and Ananya Mishra

DOI: <https://www.doi.org/10.33545/26174693.2026.v10.i1Sc.6906>

Abstract

Green pea seeds are widely consumed as a fresh vegetable and are also extensively utilized after processing in various forms such as canning, freezing, and dehydration. Owing to their high moisture content and active metabolic processes, green peas are highly perishable and undergo rapid quality deterioration after harvest, which limits their storage life under ambient conditions. Significant post-harvest losses occur due to physiological changes, moisture loss, enzymatic reactions, and microbial spoilage, thereby affecting their nutritional quality, sensory attributes, and market value. To address these challenges, various storage and processing technologies have long been employed to transform perishable fruits and vegetables into safe, palatable, and shelf-stable products while preserving their nutritional and sensory characteristics. Among the available preservation methods, freezing is regarded as one of the most efficient techniques, as it effectively retards enzymatic activity and microbial growth, ensuring extended shelf life with minimal quality degradation. Hence, the production of frozen green peas is essential to reduce post-harvest losses, ensure year-round availability, enhance economic returns, and provide consumers with a convenient and nutritious vegetable product. The present investigation entitled "Studies on standardization of frozen green pea and evaluation of its quality attributes" was conducted to evaluate the effect of different pre-treatment combinations on the quality and storage behaviour of frozen green peas. The experiment consisted of eight treatments with three replications, involving blanching, salt, citric acid, acetic acid, and their combinations. Sensory evaluation indicated that treatment T₈ (blanching + acetic acid) was the most acceptable, recording the highest overall score (3.98), followed by T₆ (blanching + salt). TSS was highest in the control, while sugar, acidity, ascorbic acid, and protein contents varied significantly among treatments. The benefit cost ratio of 2.17 confirmed the economic feasibility of frozen green pea processing.

Keywords: Frozen peas, quality, preservation, sensory, processing

Introduction

Pea (*Pisum sativum* L.) is one of the most popular pulse crops of India. It ranks top ten among the vegetable crops and belongs to Fabaceae family. The fruit is a typical pod containing four to nine seeds. They are used for the human diet for a long time because it is an excellent source of protein, vitamins, minerals and other nutrients and low in fat, high in fiber and contains no cholesterol. Garden pea/sweet pea is a choice vegetable grown for its fresh shelled green seeds rich in protein (18-30%), slowly digestible starch (50%), soluble sugars (5%), fiber, minerals and vitamins. Garden pea generally has white flowers and their seed shapes may be round, dimpled or wrinkled, and their seed colour is green or yellow. The green seeds are used as vegetable or can be used after processing (canning, freezing and dehydration). Unfortunately, they are perishable and can't be stored for longer period. Storage and processing technologies have been utilised for centuries to transform these perishable fruits and vegetables into safe, delicious and stable products. So there is need for production of frozen green pea. Frozen product that obtained from pea cooked before freezing contained higher amounts of most amino acids than that obtained from traditionally frozen pea. Green pea prepared for consumption from the frozen product obtained using the modified technology (cooking before freezing) contained higher amounts of polyphenols and beta-carotene and had higher antioxidative activity than cooked pea obtained from the traditional frozen product (Gębczyński, 2006) [3]. Phenolic compounds are considered natural antioxidants that may help protect against diseases such as cancer and

various inflammatory-related diseases. Phenolic compounds are found to be present in the seed coat and cotyledon of peas.

Therefore, the study attempted to make the present investigation entitled of "Studies on standardization of frozen green pea and evaluation of its quality attributes" was conducted in light of the following objectives:

1. To assess the physio-chemical characteristics of green pea
2. To standardize the recipe for frozen green pea
3. To assess the quality of frozen green pea during storage period.
4. To find out the b/c ratio of frozen green peas.

Materials and Methods

The present research was conducted in the Laboratory of

Horticulture, Department of Horticulture, NEHU Tura Campus, Meghalaya during 2020-2022 with a view to analyse the physio-chemical characteristics and sensory attributes of fresh and frozen product of green peas and to standardize along with the evaluation of nutritional values of stored peas. The overall experiment was done on the three replication and eight treatment combinations. Statistical analysis and test of significance were done following the method. The analysis of variance (ANOVA) of the data was carried out factorial randomised design. The storage study of standardized frozen green pea was done at monthly interval at 18 °C temperature. The meteorological data during the period of research experiment (2020-2022) are presented in Table 1 showed the average monthly temperature (°C) and Relative Humidity (%) during Research period.

Table 1: Meteorological data pertaining to period of experimentation

Months	Monthly Average temperature			Monthly Average RH			Rainfall (mm)
	Max (°C)	Min (°C)	Average (°C)	Max (%)	Min (%)	Average (%)	
Oct 2021	33	23	28	100	60	80.00	227.80
Nov 2021	27	19	28	96	59	77.50	0.00
Dec 2021	26	14	15	98	53	75.50	0.00
Jan 2021	24	12	18	100	47	73.50	12.20
Feb 2021	28	12	20	98	36	67.00	88.80
March 2022	35	20	27.50	100	28	64.00	29.20
April 2022	33	21	27	98	60	79.00	116.02
May 2022	33	23	28	98	60	79.00	208.10
	29.88	18	23.94	98.50	50.38	74.50	85.26

Sources: <https://www.timeanddate.com> and District Agricultural Office, Tura (2021-20)

Studies on physico-chemical characteristics of green pea
Part A: Physical parameters

Table 2: Physical characteristics of green pea

Sl. No.	Physical parameters	Methods used
1	Pod colour	By RHS chart and visual
2	Shelling percentage	By weighing balance

Physical characters of green pea

1) Pod colour

Colour was observed visually and with the help of RHS colour chart.

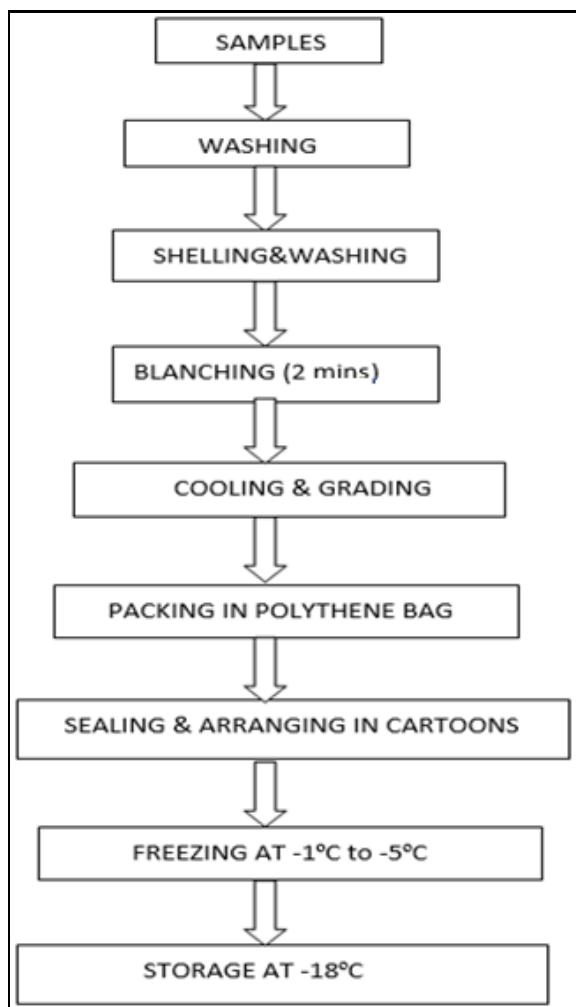
2) Shelling percentage

Shelling percentage was measured with the help of weighing machine.

Part B: Biochemical Parameters

Biochemical composition of fresh samples, stored frozen green peas were analysed with the following standard methods as mentioned below in Table 2.

Table 3: Biochemical parameters of fresh pea and stored frozen green peas.


Sl. No.	Chemical parameters	Methods used
1	TSS (Degree Brix)	By Hand Refractometer
2	Total sugar (%)	By Lane and Eynon (1923) ^[5]
3	Reducing sugar (%)	By Lane and Eynon (1923) ^[5]
4	Non-reducing sugar (%)	By Lane and Eynon (1923) ^[5]
5	Ascorbic acid (mg/100 g)	By Ranganna (2004) ^[11]
6	Protein %	By Lowry's (1951)
7	Acidity%	By AOAC method (1984) ^[1]

Study on standardization of recipe for frozen green pea

Table 4: Standardization of recipes of frozen green pea

Treatment	Proportion of ingredient for frozen green pea (250 g/Replication = 750 g/Treatment)
T ₁	Green pea (Control)
T ₂	Blanched (80 °C) for 2 mins
T ₃	1% salt for 5 mins
T ₄	1% citric acid for 5 mins
T ₅	1% acetic acid for 5 mins
T ₆	Blanched (2 mins) + 1% salt (5 mins)
T ₇	Blanched (2 mins) + 1% citric acid (5 mins)
T ₈	Blanched (2 mins) + 1% acetic acid (5 mins)

Methodology used in standardization of frozen pea was (Singh *et al.* 2014). Post Harvest Handling and Processing of Fruits and Vegetables

Studies on quality assessment of frozen green pea during storage period

Table 5: Assessment of quality of frozen green pea during storage

Sl. No.	Chemical parameters	Methods used
1	TSS(Degree Brix)	By Hand Refractometer
2	Total sugar(%)	By Lane and Eynon (1923) ^[5]
3	Reducing sugar (%)	By Lane and Eynon(1923) ^[5]
4	Non-reducing sugar (%)	By Lane and Eynon(1923) ^[5]
5	Ascorbic acid(mg/100 g)	By Rangana, 2004
6	Protein%	By Lowry's method (1951) ^[7]
7	Acidity%	By AOAC method (1984) ^[1]

Estimation of Benefit: Cost ratio of standardized frozen green pea

The benefit cost ratio was calculated after estimation of total cost involved including the operational and 10% overhead charges incurred during the preparation of frozen green pea. The benefit: cost ratio was computed by the formula as given below:

$$\text{Net income Benefit: Cost ratio (b/c)} = \frac{\text{Net income}}{\text{Total cost of production}}$$

The gross income was estimated by average market price of similar products and total cost of production was estimated by addition of the fixed cost and variable cost with 10% overhead charges of fixed inputs.

Result and Discussion

Physical characteristics of fresh green pea

The physical parameters of fresh green pea values are presented in Table 6. The shelling percentage of green pea was found to be 44% and the colour was green.

Table 6: Physical characteristics of fresh green pea

Sl. No.	Physical parameters	Values
1	Pod colour	Green, 140B by RHS chart
2	Shelling percentage	44%

Biochemical characteristics of fresh pea

The biochemical compositions of fresh pea values are shown in Table 7. Fresh pea contained high amount of Protein (19.14%), Ascorbic acid (9.72 mg/100 g), TSS (8.33°Brix), Total Sugars (2.34%), Reducing-sugar (1.92%), Non-reducing sugar (0.42%) and Acidity (0.13%) respectively. It was supported by Pal *et al.* (2018) in garden pea on biochemical characterization and its variability.

Table 7: Biochemical characteristics of fresh green pea

Sl. No.	Chemical parameters	Values
1	TSS	8.33°Brix
2	Total sugar	2.34%
3	Reducing sugar	1.92%
4	Non-reducing sugar	0.42%
5	Ascorbic acid	9.72 mg/100 g
6	Protein	19.14%
7	Acidity	0.13%

Standardization of frozen green pea

The methods for standardization of frozen green pea were prepared according to the availability of raw materials with different concentrations and proportions along with the nutritive prospect. The proportions of ingredients required for frozen green pea in each treatment are presented in Table 3. Periodical panel tests of frozen peas were conducted at an interval of 0 month (freshly prepared), 1 month and 2 months(stored peas) by 15 panellists respectively. The acceptability of freshly and stored green peas on the basis of overall ratings ranged between 3.70 to 3.98, 3.68 to 3.88 and 3.60 to 3.80 respectively.

Treatments T₈ (3.98) showed highest acceptability score which was on par with T₆ (3.96) in freshly prepared peas while lowest value was noted in T₂ (3.70) and T₇ (3.72) respectively as shown in Table 3 and Fig 1. Similarly for 30 days the highest score was T₅ (3.88) which was on par with T₈ (3.86) and for lowest was in T₂ (3.68). For 60 days the highest was T₃ (3.80) followed by T₆ (3.74) and T₄ (3.72) while the lowest was in T₂ (3.60), T₇ (3.60) respectively. A similar observation was mentioned by Pukszta and Palich (2008)^[10] on changes in stored frozen green peas and for sensory evaluation, a critical value was accepted at the level of 3.50 points and decreases during its 24 weeks of storage.



Fig 1: Standardization of frozen green pea during storage

Studies on quality assessment of frozen green pea during storage period

Total Soluble Solids (TSS)

The TSS content was found significantly difference ($p \leq 0.01$) among the treatments in fresh and 2 months stored frozen peas and values are presented in Table 4.4 and Fig 2. The TSS content of fresh processed peas was observed highest in T₁ (9.13°Brix) i.e., control which was on par with T₂ (8.80°Brix) whereas the lowest was recorded in T₆ (6.80°Brix) i.e., blanched + 1% salt followed by T₅ (7.47°Brix) in the freshly prepared frozen peas(0 months). The peas were treated with different natural preservatives i.e., 1% salt, 1% citric acid, 1% acetic acid and stored in freezer. The TSS content was found continuously decreasing during the storage period upto 2 months at refrigerated temperature (-18°). The TSS content was highest in T₁ and T₃ i.e., 8.33°Brix which was on par with T₃ (8.00°Brix) and lowest was found in T₆ (6.47°Brix). T₃ (7.80°Brix) was highest which was on par with T₁ (7.67°Brix) and lowest was T₆ (6.13°Brix) after 2 months of storage. The decrease in TSS might be due to conversion into invert sugar during storage. A similar work was also done by in pea about blanching effect on quality and self-life of pea that TSS decreased with longer in storage period. It was supported by Martinez *et al.* (1995) [8] in turnip greens that unblanched one changed from 6 to 5 °Brix during storage. The use of citric acid in blanching water for 2 mins stabilized the TSS during frozen storage.

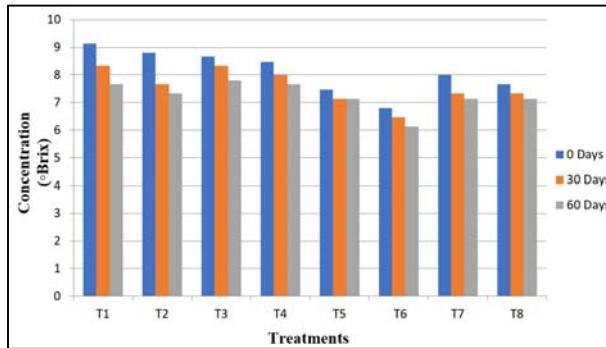


Fig 2: Change of levels of TSS during storage period

Total sugar

The data of frozen green pea illustrated in Table 4 and Fig 3 showed a significant difference ($p \leq 0.01$) among the 8 treatments in freezing conditions. Freshly prepared peas of total sugar content was found highest in T₈ (1.99%) which was on par with T₆ (1.96%) whereas the lowest was in T₄

(1.02%). After 2 months of storage there was reduction in total sugar content. For 30 days of storage, highest was recorded in T₈ (1.92%) followed by T₁ (1.88%) and lowest was recorded in T₄ (0.94%). Similarly, for 60 days, The highest was observed in T₈ (1.80%) which was on par with T₆ (1.60%) whereas, lowest was in T₄ (0.91%). The decrease in total sugar was due to solubilisation of sugars and absence of pods for protection from leaching out during water blanching. A similar research was made by Grzeszczuk *et al.* (2007) [4] on the effect of blanching, freezing and freeze storage on changes of some chemical compounds content in New Zealand spinach.

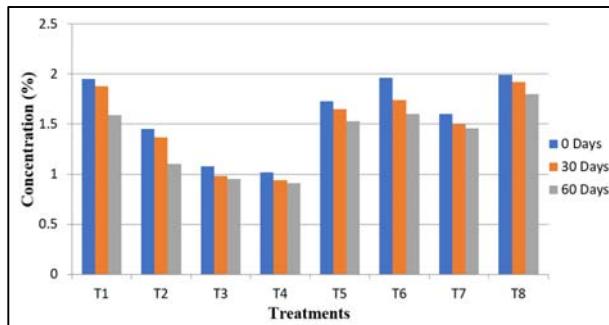


Fig 3: Change of levels of Total Sugar during storage period

Reducing sugar

The value of reducing sugar content in freshly and stored frozen peas were found significantly different ($p \leq 0.01$) within the treatments as data depicted from Table 5 and illustrated in Fig 4. Reducing sugar content in freshly prepared peas was found highest in T₈ (1.57%) which was on par with T₁ (1.54%) respectively whereas least amount was found in T₄ (0.62%). With the increase in storage period it showed a slight decrease in all the treatments. T₈ (1.50%) was highest which was on par with T₁ (1.46%) and lowest was recorded in T₄ (0.55%) for 30 days of storage. After 60 days of storage, T₈ (1.41%) which was on par with T₁ (1.22%) found the highest whereas lowest was found in T₄ (0.55%) respectively.

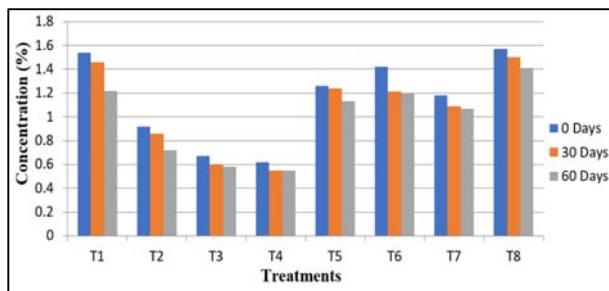


Fig 4: Change of levels of Reducing Sugar during storage period

Non-Reducing sugar

The value of non-reducing sugar content of freshly and stored frozen peas were found significantly different ($p \leq 0.01$) among the treatments and data are presented in Table 5 and illustrated in Fig 5. The non-reducing sugar was found highest in T₆ (0.51%) which was on par with T₂ (0.49%) and lowest was found in T₁ and T₄ i.e., 0.39% in freshly prepared green peas. For 30 days, T₆ (0.50%) was highest which was also on par with T₂ (0.48%) and lowest

was T₃ and T₄ i.e., 0.36%. There was a slight change in non-reducing content after 2 months of storage. The non-reducing sugar content was observed in decreasing trend with the increase in storage period. T₆ (0.38%) was recorded highest and lowest was observed in T₄ (0.34%) and T₃ (0.34%) after 2 months of storage.

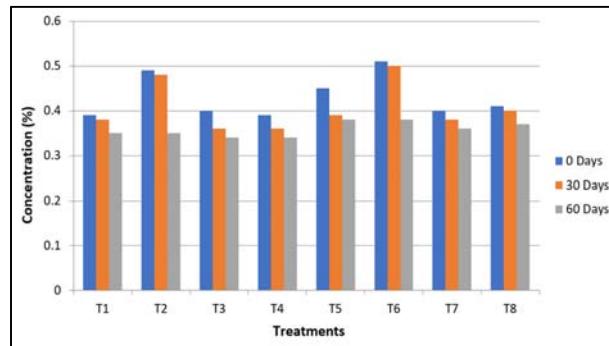


Fig 5: Change of levels of Reducing Sugar during storage period

Titratable acidity

The data in respect of acidity under different treatments is presented in Table 6 and illustrated in Fig 6: The highest amount of acidity was found in T₄, T₆, T₇, T₈ (0.38%) which was followed by T₆ (0.30%) and lowest was found in T₁ and T₂ with 0.13% for 0 month of storage. With the increase in storage period, it was found that acidity content decreased while T₁, T₂ and T₃ didn't change which has the lowest value and highest was recorded in T₄, T₅, T₇ and T₈ with 0.26% respectively. Acidity was decreased which might due to polymerization of organic acids with sugars and amino acids. It might be also due to modification of permeability of the cell membrane during frozen storage. A similar study was also done by Martinez *et al.* (2013)^[8] who conducted a comparative study on effect of blanching and frozen storage on some quality parameters of turnip greens ('grellos') that highest titratable acidity was found in treatment treated with blanching + citric acid and decreases with storage period.

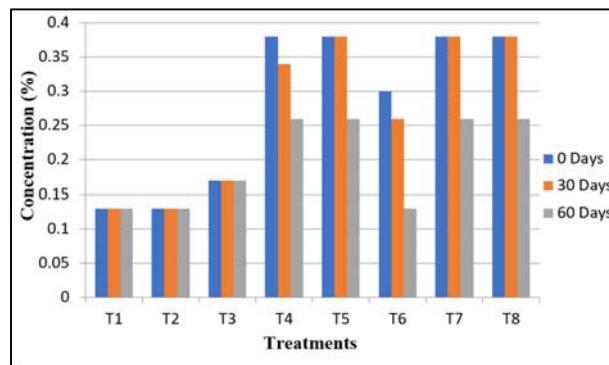


Fig 6: Change of levels of Titratable acidity during storage periods

Ascorbic acid

The ascorbic acid content of freshly and stored frozen green peas are presented in Table 6 and Fig 7. Ascorbic acid in freshly prepared frozen green peas was found highest in T₈ (6.48 mg/100 g) which was on par with T₇ (6.12 mg/100 g) while lowest was in T₂ (3.24 mg/100 g) respectively. The ascorbic acid content declined after 60 days of storage. For 30 days of storage, highest was observed in T₈, T₇ i.e., 5.28 mg/100 g and lowest was found in T₂ (2.64 mg/100 g). For

60 days, T₈, T₇ (4.80 mg/100 g) was highest and lowest in T₂ (2.40 mg/100 g). The declining of ascorbic acid content might be due to inactivation of oxidation enzymes and conversion of dehydro ascorbic into 2, 3-diketogluconic acid. Action of enzymes like AA oxidase, phenolase or peroxidase also directly or indirectly responsible for their losses. A similar study was observed by Jany *et al.* (2008) that when stored at freezing temperature and the lowest 12.1 mg/100 g was recorded in pea after 90 days of storage.

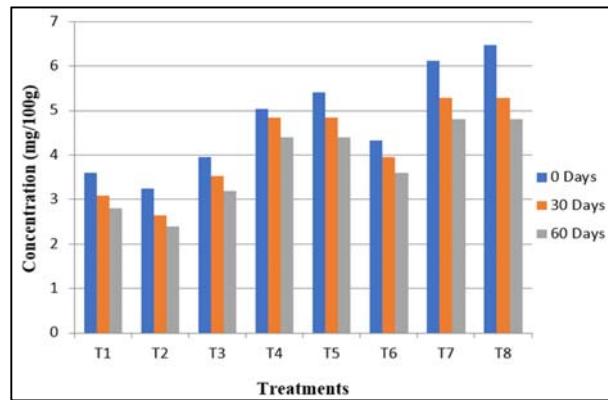


Fig 7: Change of levels of Ascorbic acid during storage periods

Protein

The protein values in freshly prepared and stored frozen green peas were found significantly superior ($p \leq 0.01$) within the treatments as shown in Table 7 and Fig 8. T₃ (17.42%) of freshly prepared green peas was found highest which was on par with T₁ (17.11%) and lowest was found in T₆ (11.47%). For 30 days T₁ (17.01%) was found highest followed by T₄ (13.56%) and lowest was T₅ (8.99%). Protein content was found declining with the increase in storage period. T₄ (12.65%) was recorded highest which was on par with T₈ (12.12%) for 60 days of storage and lowest was T₅ (6.11%). The declining in protein content comparing to the fresh one might be due to denaturation of protein during the storage condition for longer period. A similar finding was observed by Youling L. Xiong (1997) that protein denatured while stored in freezer.

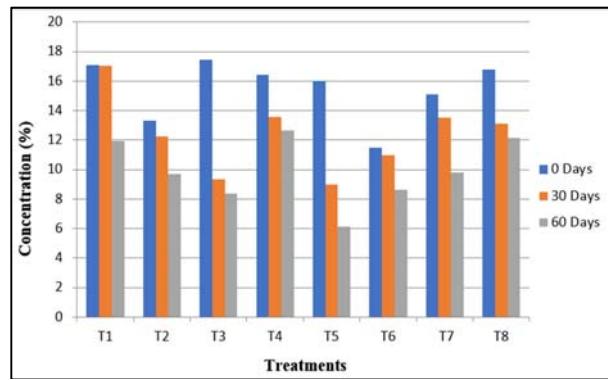


Fig 8: Change of levels of Protein during storage periods

Estimation of benefit/cost ratio of frozen green pea

The cost of ingredients and other expenses incurred for making of frozen green pea were estimated based on market price and benefit: cost ratio was calculated accordingly. The benefit: cost ratio of standardized frozen green pea was calculated based on rated score by panellists according to

colour, flavour and taste in treatment. The data depicted from table 8 showed that calculated value of Benefit: Cost ratio of standardized frozen green peas based on sensory

score, T_8 (2.17) got first grade among eight treatment whereas second grade was T_6 (2.04) and third grade was T_1 and T_5 (2.00) against 1 rupee investment of the product.

Table 8: Estimated benefit: cost ratio of frozen green pea

Sl. No.	Products	Cost (Rs./kg)	Gross Income (Rs./kg)	Net Income (Rs./kg)	Benefit: Cost ratio (b/c)	Rated scored out of 5.0
1	Frozen green pea (T_8)	75.64	240	164.36	2.17	3.98 Grade I
2	Frozen green pea (T_6)	75.64	230	154.36	2.04	3.96 Grade II
3	Frozen green pea (T_1/T_5)	75.64	220	144.36	2.00	3.92 Grade III

Summary and Conclusion

In the present investigation entitled "Studies on standardization of frozen green pea and evaluation of its quality attributes" was made with 8 treatments and 3 replications having different combinations of pre treatment methods. These combinations were formulated to evaluate the characteristics of frozen green pea and storage behaviours. With regards to the sensory evaluation of frozen green pea by panellists, the most acceptable treatment was T_8 (blanched + acetic acid) which scored 3.98 for colour, flavour/aroma and taste followed by T_6 (blanched + salt) which scored 3.96. TSS recorded was highest in T_1 (control) with 9.13°Brix followed by T_2 (blanched) with 8.80°Brix respectively. Total sugar was lowest in T_4 (citric acid) with 0.91% whereas highest was observed in T_8 (blanched + acetic acid) with 1.80% after 2 months of storage. Similarly, reducing sugar was lowest in T_4 (citric acid) with 0.55% and highest was recorded in T_8 (blanched + acetic acid) with 1.41% after 2 month of storage. Non-reducing content in T_4 (citric acid) and T_3 (salt) was 0.34% which was lowest and highest was recorded in T_6 (blanched + salt). Highest acidity was found in T_8 (blanched + acetic acid), T_7 (blanched + citric acid), T_5 (acetic acid), T_4 (citric acid) having 0.26% and lowest was recorded in T_1 (control), T_2 (blanched) with 0.13%. There were not many changes in acidity value. The ascorbic acid content was highest in T_8 (blanched + acetic acid) and T_7 (blanched + citric acid) having 4.80 mg/100 g and lowest in T_2 (blanched) having 2.40 mg/100 g after 2 month of storage. The protein content in T_5 (acetic acid), T_3 (salt), T_6 (blanched + salt) were 6.11%, 8.36% and 8.65% respectively while highest was found in T_4 (citric acid) with 12.65%. The benefit: cost ratio of frozen green pea was found 2.17. Hence, it is economically feasible.

References

- AOAC. Official methods of analysis of the Association of Official Analytical Chemists. 14th ed. Arlington (USA): AOAC; 1984. p. 1-1141.
- Dueñas M, Estrella I, Hernández T. Occurrence of phenolic compounds in the seed coat and the cotyledon of peas (*Pisum sativum* L.). *Eur Food Res Technol*. 2004;219(2):116-123.
- Gębczyński P, Lisiewska Z. Comparison of the level of selected antioxidative compounds in frozen broccoli produced using traditional and modified methods. *Innov Food Sci Emerg Technol*. 2006;7(3):239-245.
- Grzeszczuk M, Jadczak D, Podsiadło C. The effect of blanching, freezing and freeze-storage on changes in the content of some chemical compounds in New Zealand spinach. *Veg Crops Res Bull*. 2007;66:95-104.
- Lane JH, Eynon L. Determination of reducing sugars by means of Fehling's solution with methylene blue as internal indicator. *J Soc Chem Ind*. 1923;42:32-36.
- Lisiewska Z, Gębczyński P, Kmiecik W. Effects of pre-treatment methods before freezing on the retention of chlorophylls in frozen leaf vegetables prepared for consumption. *Eur Food Res Technol*. 2007;226(1):25-31.
- Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. *J Biol Chem*. 1951;193:265-275.
- Martinez C, Ros G, Periago MJ, Lopez G, Ortuno J, Rincon F. Physico-chemical and sensory quality criteria of green beans (*Phaseolus vulgaris* L.). *Lebensm Wiss Technol*. 1995;28(5):515-520.
- Martinez-Romero D, Castillo S, Valero D. Quality control in frozen vegetables. In: *Food science and technology*. New York: Marcel Dekker; 2004. p. 283-292.
- Pukszta T, Palich P. Storage of frozen green pea and possibilities of its durability prognosis. *Acta Agrophys*. 2008;11(1):156-164.
- Ranganna S. *Handbook of analysis and quality control for fruit and vegetable products*. 3rd ed. New Delhi (India): Tata McGraw-Hill Publishing Co. Ltd.; 2004. p. 1-1112.
- Xiong YL. Protein denaturation and functionality losses. In: *Quality in frozen food*. Dordrecht: Springer Science + Business Media; 1997. p. 111-140.