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Abstract

The onion market is profoundly shaped by global trade dynamics, rapid technological advancement,
and shifting consumer demand. Within this global context, India stands out as the world's largest
producer and second-largest exporter of onions. Despite this prominent position, the nation's economy
and export potential are threatened by significant price volatility. Consequently, accurate price
predictions are crucial for farmers, policymakers, and the government to make informed decisions.
Unfortunately, agricultural datasets often exhibit nonlinearity and non-stationarity, making predictions
challenging. To address this, hybrid models are proposed, which combine multiple models instead of
relying on individual ones. Specifically, this article compares the performance of individual models
(ARIMA, TDNN, SVR) against a suite of hybrid models (EMD-ARIMA, EMD-TDNN, EMD-SVR,
EEMD-ARIMA, EEMD-TDNN, EEMD-SVR). Monthly onion price data from 2008 to 2021 is used,
and the dataset is decomposed into six independent intrinsic modes and one residue, revealing price
volatility patterns. The decomposed components are forecasted using conventional and machine
learning methods, and the forecasts are aggregated to produce a final prediction. Empirical evaluation
demonstrates that the EEMD-SVR model achieves superior predictive accuracy, with the lowest RMSE
(405.09) and MAPE (14.93%). This highlights its effectiveness in modeling the complex, nonlinear,
and non-stationary dynamics of agricultural prices.

Keywords: Onion export, price forecasting, machine learning, hybrid model, empirical mode
decomposition, ensemble empirical mode decomposition.

Introduction

The global marketplace, technological innovations, and consumer demands in the onion
industry continue to evolve (Raka and Ramesh, 2017) B4, India, the world’s largest onion
producer, recorded an output of about 26.7 million metric tonnes in 2023-24 (Dohlman et al.,
2025) 1181 and exported nearly 1.6 million metric tonnes (APEDA, 2024). However, despite
strong production and exports, domestic onion prices remain highly volatile, leading to
instability in farmers’ incomes, consumer affordability, and export competitiveness
(Debopam et al., 2021; Dhotre et al., 2025) [14 1],

Onion prices in the domestic market exhibited sharp fluctuations during 2019 and 2021,
primarily due to inadequate information regarding future prices and severe supply shocks
(Ghosh et al., 2022) [*81, These shocks were driven by low yields, delayed sowing, and crop
losses caused by excessive rainfalls (Satish 2018; Imran et al., 2025) [33 21, |n this situation,
the government imposed an onion export ban, and resorted to imports from Afghanistan,
Egypt, Turkey, and Iran to stabilize the market (Biswas 2019, and Saxena et al., 2024) [6 34,
However, such interventions often result in significant financial losses for farmers (Kumar et
al., 2020) 2%, Price forecasting of agricultural commodities is crucial for farmers,
policymakers, and the government; however, accurate forecasting remains difficult due to
unpredictable factors such as weather, market dynamics, and inadequate storage facilities
(Ajmal et al., 2024) . Agricultural price data are often nonstationary and nonlinear in nature
(Wang et al., 2020) 41, Traditional statistical approaches such as ARIMA, SARIMA, and
GARCH have been widely applied. For instance, Agbo (2023) [l examined export crop price
volatility in Egypt using ARIMA/GARCH, Sahu (2024) %2 studied potato price and export
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behaviour with similar models, and Vinay et al. (2024)
compared ARIMA and SARIMA for onion price
forecasting, confirming their short-term effectiveness.
Yadav (2024) I further demonstrated that SARIMA
outperformed other univariate models in forecasting global
wheat prices. Nevertheless, while these models are valuable
for linear and stationary datasets, they often fail to capture
the nonlinear and highly volatile dynamics of agricultural
markets.

To address these limitations, machine learning (ML) and Al
methods have gained prominence for their ability to capture
complex patterns. Xu and Zhang (2021, 2022) - applied
neural networks to commodities such as coffee, corn, cotton,
soybeans, sugar, and wheat for price forecasting. Mohanty
et al. (2023) 8 proposed an ML-based framework for crop
price prediction, while Patil et al. (2023) ?°! emphasized its
role in ensuring food security. Brignoli et al. (2024) €
applied ML to grain yield prediction futures, and Yerukala
et al. (2024) B9 uysed neural networks for agricultural
commodity forecasting. More recently, Theofilou et al.
(2025) 2 demonstrated the effectiveness of ML in staple
food crops. Collectively, these studies highlight the
versatility of ML across diverse crops and markets, though
they also caution that Al models can be prone to issues such
as local minima and overfitting.

To better address the nonlinearity and nonstationarity in
agricultural price series, hybrid and decomposition-based
approaches have received growing attention. Among these,
noise-assisted decomposition methods such as EMD and
EEMD have been particularly emphasized by Zhang (2003)
1521 Ince and Trafalis (2006) [?2, and Chen et al. (2012) [,
Guo et al. (2012) 21 combined EMD with neural networks
to enhance wind speed forecasting, while Abadan and
Shabri (2014) ™M showed that EMD-ARIMA improved rice
price forecasts. Choudhary et al. (2019) [2°1 demonstrated
that EEMD-TDNN outperformed TDNN for potato prices.
Das et al. (2020) [*3 reported the superiority of EMD-SVR
over standard SVR. Silva et al. (2021) B9 highlighted the
effectiveness of ensemble techniques for corn and sugar,
and Purohit et al. (2021) % applied hybrid methods to
tomato, onion, and potato markets. Khan et al. (2022) 23
employed EEMD for short-term forecasts, while Zelingher
and Makowski (2023) 54 demonstrated hybrid effectiveness
in maize and cocoa markets. More recent studies further
confirm these advancements: Shobharani et al. (2024) [
found TDNN and hybrid approaches outperforming
SARIMA for tomato and capsicum, and Mao and
Soonthornphisaj (2024) 1 showed that ensemble models
improved maize price prediction in Thailand.

Despite these developments, onion export price forecasting
remains relatively underexplored. This study addresses this
gap by evaluating hybrid forecasting frameworks for Indian
onion export prices with key objectives: To assess the
robustness of hybrid ML models in volatile vegetable
markets, and to provide actionable guidance for model
selection and trade-related decision-making.

2. Methods and Materials

2.1 Data source

This study used monthly export price data for Indian onions
(%/Quintal) from January 2008 to December 2021, collected
from the Agricultural and Processed Food Products Export
Development Authority (APEDA). As shown in figure 3,
data were split into training and testing sets, the first 156
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observations were utilized for model building and last 12
data points were used for validation purpose. Pre-
processing, modelling, and evaluation were performed using
Python (v3.5), and R (v4.3.2) with packages such as
forecast, t series, caret, €1071, EMD, and Rlibeemd.

2.2 Autoregressive Integrated Moving Average (ARIMA)
This model is one of the most widely used approaches for
time series forecasting. It is denoted as ARIMA (p, d, q),
where p represents the autoregressive order, d is the degree
of differencing, and q is the moving average order, defined
in equation 2.2.1. ARIMA is particularly useful for
modelling non-stationary linear time series. For seasonal
data, the model is extended to the Seasonal ARIMA
(SARIMA), denoted as ARIMA (p, d, q)(P, D, Q)s, where
(P, D, Q) are the seasonal parameters and s is the seasonal
period, it is stated in equation 2.2.2 (Box et al., 1976).

@(B)A%y, = 6(B)u, (2.2.1)

(8)Pp(B)P(B*)y, = 6(B)O(B*)u; (22.2)

Where y, is the value of the price series at time t, u,is the
disturbance term at time t which is assumed to be 11D with
mean zero and constant variance o2, the backshift operator
B is defined by (B)y; = y;_; . A= (1 — B) the differencing
operator, (A,)? = (1—B%)P? is seasonal differencing
operator. The polynomials are defined as: ¢@(B) =1 —
1B — @,B? — ---— @, BP (autoregressive), 6(B) = 1+

6,B + 6,B* + ---+ 6,B? (moving average), ®(BS) =
1—®,BS — ®,B2% — ... —
®,BPS(seasonal autoregressive) and O(BS) = 1+

0,B° + 0,B* + --- 4+ 0,B% (seasonal moving average).
Where the degrees of the polynomials are p, g, in B, and P,
Q for B? respectively.

2.3 Time delay neural networks (TDNNSs)

ANNs are human brain-inspired models that capture time
series characteristics using data-driven, nonlinear, and non-
parametric methods, unlike traditional forecasting methods.
Neural networks consist of three interconnected neuron
layers, where each layer receives input from the previous
one and sends output to the next (Singh, 2021) [81,
Nonlinear activation functions are applied at hidden nodes
to transform weighted inputs, introduce nonlinearity, and
regulate output values. During training, the network learns
optimal weights and biases stored in its nodes, which
determine the mapping between inputs and outputs. The
number of input neurons corresponds to the number of
lagged values used as predictors, while hidden nodes
process their weighted sums through nonlinear
transformations (Li et al., 2010) 16, Mathematically,
forward propagation is expressed as:

Ve = ao+ Z;?:l a; g(Boj + X Bijye-i) + & (23.1)
Where p and q are the number of input layers and hidden
nodes, Y¢_1, Ye-2: Ye—3----Ye—p are the input patterns, g;; is
the synaptic weight between the i input neuron and j
hidden neuron, a; is the weight between the j" hidden
neuron and the output neuron, By; and «a, is the bias, g(.)

are the activation functions of hidden nodes, respectively
(Ahmed, 2025) I3,
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2.4 Support Vector Regression (SVR)

SVR introduced by Vapnik (1998) 3, extends SVM to
regression tasks using a loss function. It’s working process
is shown in figure 1, and the basic linear SVR model is
defined as:
y=wlo(x)+b (2.4.2)
Where w defines the weight vector, ¢ denotes mapping
function, and b is bias, these parameters are estimated by
minimizing a regularized risk function:

R®) =S Iwli2 + c [ 22X, Lo (i £ ()] (2.4.2)

Here, % [lw]|? controls model complexity,

[% p Lg(yi,f(xi))] called ‘empirical error’ is estimated
by Vapnik e-insensitive loss function:

Le(yi fa) = (P FGl = &b~ fl 2 € 54 3)

0 otherwise

Here, both ¢ and ¢ are user-determined hyper-parameters, &
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defines a tolerance margin around the regression function,
while ¢ is a regularization constant balancing flatness and
error tolerance (Singla et al., 2021) 39,

To allow some training errors, slack variables (&;,£;") are
introduced, leading to the primal optimization problem:

Minimize: Ry(w,b,&,&") = 5 [Iwll? + CL T (& + &) (24.4)

Subject to the constraints

wlip(x)+b—y; < e+§&
yi—wlo(x)—b< e+§
.6 =20i=12,...,N

This concept known as soft margin regression. For nonlinear
problems, SVR employs the kernel trick, replacing the dot
product in feature space with a kernel function K(x;, x;) =
(d(x;),0(x;)). This enables efficient learning of nonlinear
relationships without explicitly mapping to high dimensions.
Among available kernels, the Radial Basis Function (RBF)
is widely used for time series and price forecasting tasks
(Das et al., 2019) (14,

Normalization of historical data

Separate historical data to train and
test the proposed model

Initialize the SVR hyper-parameter
(Cey)

— Training and testing operation of the

Optimized the
model?

model

| Forecast the values using best I

Fig 1: Working procedure of SVR Model

2.5 Empirical mode decomposition (EMD)

EMD is a type of adaptive time series decomposition
approach used for nonlinear and non-stationary time series
data. The method decomposes a series into a finite set of
Intrinsic Mode Functions (IMFs) and a final residue (Huang
et al., 1998) 2%, Each IMF represents an oscillatory mode
with unique amplitude and frequency modulation, and it
must satisfy two conditions: (i) the number of extrema and
zero-crossings should be nearly equal, and (ii) the mean of
the envelopes defined by local maxima and minima should
be zero (Sonam and Kumar, 2017) [, The original series
can then be reconstructed as:
y(©) = Xy hi(0) +7(0) (25.1)
Steps of EMD

1. Identify all local maxima and minima of the series.

2. Interpolate maxima and minima using cubic splines to
form the upper and lower envelopes.
3. Compute the local mean

my(t) = [YVmax () + Ymin(®)]/2 (25.2)
4. Subtract the mean from the original series
hy(®)= y(t)-my (£) (2.5.3)

5. If hy(t)satisfies the IMF conditions, it is considered as
the first IMF. If not, steps 1 to 4 are repeated by treating
h,(t) as the new input, until the remainder becomes a
monotonic function and no more IMF can be extracted.

The possible number of IMFs that can be extracted from a
time series is approximately log,N, Where N denotes the
length of the series (Wu and Huang, 2009) “¢1. While EMD

~ 183~


https://www.biochemjournal.com/

International Journal of Advanced Biochemistry Research

effectively captures hidden oscillatory patterns in non-
stationary agricultural price data, a major limitation is the
mode mixing problem, where signals of different scales
appear in a single IMF. This reduces the interpretability of
the decomposition (Sezen, 2023) [%],

2.6 Ensemble empirical mode decomposition (EEMD)

Wu and Huang (2009) ¢ introduced EEMD as an improved
version of EMD to overcome the issue of mode mixing. In
EEMD, white noise is repeatedly added to the original

https://www.biochemjournal.com

series, decomposed with EMD, and then averaged across
trials to extract the true IMFs and residue. The working
process is illustrated in Figure 2, and the final
decompoasition is represented as:
y(©)=Xj-1 b (O)+ 7(t) (26.1)
Where h;(t) , j=1,2.....n are the final IMFs and r(t) is the
residue.

Adding white noise £, (1)
YO &) =x1(0

hea

Adding white noise £(t)
¥(t) + &t} = xi(t)

Adding white noise £,,(L)
¥(E) + &q(t) = xp(t)

L ha (2) -

ﬂq 1 {t) h[t (5)
hyn(0) hin ()
(L) ri(t)

— '__‘.
128
Pl
£ % el
el B
OHH
- S.|gmlE
B
hmu(t) aai ,_l,\
3 e
Mo
Tnlt)

Fig 2: EEMD Algorithm Working procedure

3. Results and Discussion

In order to predict the prices of export onion, the dataset was
pre-processed, a few missing values were imputed using the
mean imputation method in R with the imputeTS package to
ensure accuracy and consistency. Descriptive statistics
(Table 1) revealed large fluctuations, with prices ranging
from R271.57 to ¥11,405.45 per quintal and a high
coefficient of variation (72.16%), reflecting substantial
instability. The time plot (Figure 3) clearly revealed the
presence of trend and volatility, while the seasonal boxplot
(Figure 4) confirmed seasonality, and the ACF and PACF

plots (Figure 5) indicated non-stationarity. Formal statistical
tests further supported these findings: Shapiro-Wilk test (p<
0.01) Rejected normality, the Ljung-Box test (p< 0.01)
confirmed significant autocorrelation, the KPSS test (Table
2) Indicated non-stationarity in original series but
stationarity after first differencing, and the BDS test (Table
3) Confirmed the presence of nonlinearity (p< 0.01 across
all dimensions). Collectively, these results confirm the data's
complexity and justify the use of advanced forecasting
methods.

= Training set
Test set
10000

Price (RS./ qtl)
= g
= ]
= =]

&
3

2000

2008 2010 2012

2014

2016 2018 2020 02z

Time

Fig 3: Monthly onion export price series
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Table 1: Descriptive Statistics of Monthly Onion Export Prices (3/Qtl)

Statistical Measures Export
Mean 2005.583
Minimum 271.572
Maximum 11405.453
Standard Deviation 1447.274
Skewness 3.123
Kurtosis 13.331
Coefficient of variation 72.166
Shapiro-Wilk test (w) 0.682**
Ljung-Box test 63.621**
Note: ** significant at the 1% level of significance
2000 .
= . .
26000
i * ! ‘
3000 : . | y—l—\
e e EEm | — == i —— i —— Qe
0
Jan Feb War Apr May Jun Jul Aug sept oct Nov Dee
Months
Fig 4: Seasonal box plot of onion prices in the export market
ACF plot of orginal series of Export onion PACEF plot of orginal series Ehfjxport onion
061 0.6
0.4 0.44
o 5
Qo2 || 0 - I R
| I . I | |
T ] I
____________________________________________________ _0.2_---- TTTTTTTTTTTTTTTTT T
§ 12 12 24 ] 12 12 24
Lag Lag
ACF plot of First Differenced series Export onion PACF plot of First Differenced series Export onion
-
l [ 1
0.0 T T
T 1T | |
" 0.0 w
< N N U S I O A I B
____________________________________________________ 0.2
-0.21
0.4
B 12 18 24 6 12 18 24
Lag Lag
Fig 5: ACF and PACF plots of the original and transformed onion export price series
Table 2: KPSS test results for onion Price in Export Market
Nature of series KPSS level Truncation lag parameter p- value Conclusion
Original series 0.782 4 0.01 Non-stationarity
After 1 diff 0.012 4 0.1 Stationarity
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Table 3: BDS test results for testing linearity of data series

Dimension (m=2) Dimension (m=3) Conclusion
Parameter Statistic Probability Statistic Probability
723.635 0.203 <0.01 16.353 <0.01
1447.270 10.540 <0.01 10.167 <0.01 Non linear
2170.904 8.954 <0.01 8.552 <0.01
2894.539 6.589 <0.01 6.379 <0.01

Following the identification of nature of date series, several
traditional forecasting models were applied, including
ARIMA, TDNN and SVR. Their predictive performance on
the test dataset is reported in Table 4. An ARIMA (1,1,1)
(0,0,2) ™ model was selected as optimal based on its low
AIC value, and its residuals passed diagnostic checks for
white noise. However, consistent with the BDS test results,
its linear structure failed to capture the dataset nonlinear
dynamics. Subsequently, machine learning models (ANN
and SVM) were used to address this limitation.

After conducting several iterations with different nodes, the
optimal ANN architecture was determined to be (12:
6S:1L), consisting of 12 input nodes, 6 hidden nodes with
Tanh activation function, and 1 output node, based on their
holdout forecasting performance. The RMSE of the training
set (213.03) indicated strong in-sample performance,
whereas the substantially larger RMSE of the test set
(1643.08) confirmed overfitting (Table 5). In contrast, SVR,

tuned via 10-fold cross-validation including an RBF kernel
with the hyper parameters (Cost = 1, Gamma = 0.1, Epsilon
= 0.1), achieved better robustness and higher predictive
accuracy than TDNN, as shown in Figures 9 and 10.

To enhance prediction accuracy, hybrid models using EMD
and EEMD decomposition were applied. The series was
decomposed into six IMFs and one residual (Figures 6-7),
where amplitudes decreased from IMF1 to IMF6 and the
residual captured the random trend. This decomposition
revealed hidden patterns, improving the forecasting
performance of ARIMA, TDNN, and SVR (Das et al.,
2023) 12, Each decomposed dataset was modeled as in the
single-model approach, and final fitted results are then
obtained following the procedure outlined in section 2.5 and
2.6 of the methodology. The results (Table 4) indicated that
the EEMD-SVR model produced forecasts closer to the test
data than the other models, as illustrated in Figure 8,
effectively capturing both linear and nonlinear dynamics.

Plot_IMFs
[}
=] o
— T ] 1 8
L o no- A
= o = 2 7
=Z 59 = i
g 2
o™ 8] w |
w =2 L
= o4 = B
- 84 o4
© % n o g 7
LL [u] : -_9 o —
7 7 .
= g7 g g7
a9 T T T T T T T 1
Y . 2008 2012 2016 2020
L o
= g Time
o T T T I T T I T
2008 2012 2016 2020
Time
Fig 6: EMD components of monthly export onion price
Plot_IMFs
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Fig 7: EEMD components of monthly export onion price
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Table 4: Forecasted values of the export onion prices using different models

2000

1500

Time | Test |ARIMA|EMD-ARIMA|EEMD-ARIMA| TDNN |[EMD-TDNN|(EEMD-TDNN| SVR |EMD-SVR|EEMD-SVR
Jan-21|2912.772|2135.977|  2215.123 2635.244 3108.443| 2272.953 2391.306  |3893.908| 2034.806 | 3660.807
Feb-21]3650.996(6125.156| 2752.232 3742.896 5223.323] 2306.568 1555.354 |3071.966] 660.1495 | 3209.602
Mar-21[2248.038/3020.415| 3439.036 3078.639 1598.3 | 2967.874 1363.932  |4333.064| 1295.059 | 2535.957
Apr-21]1694.196|2845.153| 2788.226 3264.777 1380.299] 3243.568 2147.729 |2229.542| 1652.97 2421.013
May-21]1953.881|2307.903]  3008.195 2657.269 1471.921] 4373.173 2788.795 |1715.816] 2042.65 2341.839
Jun-21|2228.614|2101.044] 3729.831 3483.767 2895.819| 5995.593 3739.343 |1957.557| 1398.867 | 2411.726
Jul-21 | 2202.52 |1952.583 3949.5 3817.076 2866.374| 7450.691 3851.552 |2210.828| 1863.424 | 2401.206
Aug-21|2317.634|2008.745 3787.77 3963.268 1820.009] 3777.488 2929.447 |2185.962| 2103.546 | 2467.861
Sep-21|2176.981|2157.485] 3673.601 3758.823 2746.535| 2076.5 2383.603  [2298.292| 2260.75 2469.529
Oct-21|2637.548(6379.426] 3610.843 3543.069 6265.09 | 2970.772 3287.193 |2161.893| 2404.513 | 2662.228
Nov-21|2604.104(8374.231| 3471.276 3905.936 6381.878| 1554.735 3265.069  |2665.853| 2494.247 | 2864.872
Dec-21|2538.223|3664.267 3290.19 3562.891 3033.048] 1389.186 2619.418 |2622.499| 3089.186 | 2989.186
Onion Price Forecasting: Actual vs Prediction Models
4000 - Actual Test Data
== FEMD-ARIMA
-~ EEMDTDNN
== EEMD-5VR
3500
3000
o
& 500

P i
X &
- i

-

A
o

Time (Month-Year)

Fig 8: Forecasted values of the export onion prices using different models

The predictive performance of nine models for forecasting
onion export prices was evaluated using RMSE and MAPE
metrics (Table 5). The results indicate that hybrid machine
learning models consistently outperformed traditional
benchmarks, with the EEMD-SVR model achieving the
highest accuracy. Its superiority is visually confirmed by
radar plots, which show consistently lower RMSE (405.09)

SVR, The Diebold-Mariano test was conducted under the
alternative hypothesis that EEMD-SVR outperforms the
other hybrid models in forecasting accuracy. The p-values
reported in Table 6 confirm that EEMD-SVR was
significantly more accurate than all other hybrids. The
enhanced performance of EEMD-SVR can be attributed to
the decomposition process, which isolates and identifies

and MAPE (14.93%) values compared to other models distinct features of price volatility, improving the
(Figures 9-10). To further assess the superiority of EEMD- forecasting process.
Table 5: Comparative assessment of prediction performance of different models
EMD- EEMD- EMD- | EEMD- EMD-

Set TEST ARIMA ARIMA ARIMA TDNN TDNN TDNN SVR SVR EEMD-SVR
Train RMSE 1078.71 953.31 846.36 213.03 | 181.77 172,25 | 882.12 | 718.34| 582.36
MAPE (%) 28.54 27.23 26.96 8.32 8.44 8.36 14.85 | 21.90 16.25
Test RMSE 2479.80 1363.71 1179.47 |1643.08 | 1266.35 | 1026.00 | 726.36 | 994.14| 405.09
MAPE (%) 70.06 54.036 47.97 44.30 47.45 34.65 19.46 | 21.82 14.93

Table 6: Diebold Marino test results EEMD-SVR vs other hybrid models

Test comparison EMD-ARIMA EEMD-ARIMA EMD-TDNN EEMD-TDNN | EMD-SVR
Test statistic 4.681 3.987 2.188 1.942 1.532
EEMD-SVR p value 0.0003 0.001 0.039 0.041 0.053
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ARIMA
EMDARIMA EEMDSVR
EEMDARIMA EMDSVR
ANN SVR
EMDANN  EEMDANN

Fig 9: RMSE values for test data of export onion prices

ARIMA
EMDARIMA EEMDSVR
EEMDARIMA EMDSVR
ANN SVR
EMDANN  EEMDANN

Fig 10: MAPE values for test data of export onion prices

4. Conclusion

Farmers and traders can reduce losses with advance price
information, which is especially important for perishable
crops like tomatoes, onions, and potatoes. In this study, we
forecast onion export prices using hybrid machine learning
and classical models, focusing on handling both
nonstationary and nonlinear data. We used decomposition
techniques, EMD and EEMD, to break the series into
simpler components, predicted them with ARIMA, TDNN,
and SVR, and combined the results for the final forecast.
EEMD improved prediction accuracy compared to EMD.
Some small errors may occur due to external factors like
weather. Accurate forecasts help farmers make better
decisions on production and marketing, and assist the
government in planning import and export policies.
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