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Abstract 
The onion market is profoundly shaped by global trade dynamics, rapid technological advancement, 
and shifting consumer demand. Within this global context, India stands out as the world's largest 
producer and second-largest exporter of onions. Despite this prominent position, the nation's economy 
and export potential are threatened by significant price volatility. Consequently, accurate price 
predictions are crucial for farmers, policymakers, and the government to make informed decisions. 
Unfortunately, agricultural datasets often exhibit nonlinearity and non-stationarity, making predictions 
challenging. To address this, hybrid models are proposed, which combine multiple models instead of 
relying on individual ones. Specifically, this article compares the performance of individual models 
(ARIMA, TDNN, SVR) against a suite of hybrid models (EMD-ARIMA, EMD-TDNN, EMD-SVR, 
EEMD-ARIMA, EEMD-TDNN, EEMD-SVR). Monthly onion price data from 2008 to 2021 is used, 
and the dataset is decomposed into six independent intrinsic modes and one residue, revealing price 
volatility patterns. The decomposed components are forecasted using conventional and machine 
learning methods, and the forecasts are aggregated to produce a final prediction. Empirical evaluation 
demonstrates that the EEMD-SVR model achieves superior predictive accuracy, with the lowest RMSE 
(405.09) and MAPE (14.93%). This highlights its effectiveness in modeling the complex, nonlinear, 
and non-stationary dynamics of agricultural prices. 
 
Keywords: Onion export, price forecasting, machine learning, hybrid model, empirical mode 
decomposition, ensemble empirical mode decomposition. 
 
Introduction 
The global marketplace, technological innovations, and consumer demands in the onion 
industry continue to evolve (Raka and Ramesh, 2017) [31]. India, the world’s largest onion 
producer, recorded an output of about 26.7 million metric tonnes in 2023-24 (Dohlman et al., 
2025) [16], and exported nearly 1.6 million metric tonnes (APEDA, 2024). However, despite 
strong production and exports, domestic onion prices remain highly volatile, leading to 
instability in farmers’ incomes, consumer affordability, and export competitiveness 
(Debopam et al., 2021; Dhotre et al., 2025) [14, 15]. 
Onion prices in the domestic market exhibited sharp fluctuations during 2019 and 2021, 
primarily due to inadequate information regarding future prices and severe supply shocks 
(Ghosh et al., 2022) [18]. These shocks were driven by low yields, delayed sowing, and crop 
losses caused by excessive rainfalls (Satish 2018; Imran et al., 2025) [33, 21]. In this situation, 
the government imposed an onion export ban, and resorted to imports from Afghanistan, 
Egypt, Turkey, and Iran to stabilize the market (Biswas 2019, and Saxena et al., 2024) [6, 34]. 
However, such interventions often result in significant financial losses for farmers (Kumar et 
al., 2020) [25]. Price forecasting of agricultural commodities is crucial for farmers, 
policymakers, and the government; however, accurate forecasting remains difficult due to 
unpredictable factors such as weather, market dynamics, and inadequate storage facilities 
(Ajmal et al., 2024) [4]. Agricultural price data are often nonstationary and nonlinear in nature 
(Wang et al., 2020) [45]. Traditional statistical approaches such as ARIMA, SARIMA, and 
GARCH have been widely applied. For instance, Agbo (2023) [2] examined export crop price 
volatility in Egypt using ARIMA/GARCH, Sahu (2024) [32] studied potato price and export  
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behaviour with similar models, and Vinay et al. (2024) 
compared ARIMA and SARIMA for onion price 
forecasting, confirming their short-term effectiveness. 
Yadav (2024) [49] further demonstrated that SARIMA 
outperformed other univariate models in forecasting global 
wheat prices. Nevertheless, while these models are valuable 
for linear and stationary datasets, they often fail to capture 
the nonlinear and highly volatile dynamics of agricultural 
markets. 
To address these limitations, machine learning (ML) and AI 
methods have gained prominence for their ability to capture 
complex patterns. Xu and Zhang (2021, 2022) [47-48] applied 
neural networks to commodities such as coffee, corn, cotton, 
soybeans, sugar, and wheat for price forecasting. Mohanty 
et al. (2023) [28] proposed an ML-based framework for crop 
price prediction, while Patil et al. (2023) [29] emphasized its 
role in ensuring food security. Brignoli et al. (2024) [8] 
applied ML to grain yield prediction futures, and Yerukala 
et al. (2024) [50] used neural networks for agricultural 
commodity forecasting. More recently, Theofilou et al. 
(2025) [42] demonstrated the effectiveness of ML in staple 
food crops. Collectively, these studies highlight the 
versatility of ML across diverse crops and markets, though 
they also caution that AI models can be prone to issues such 
as local minima and overfitting. 
To better address the nonlinearity and nonstationarity in 
agricultural price series, hybrid and decomposition-based 
approaches have received growing attention. Among these, 
noise-assisted decomposition methods such as EMD and 
EEMD have been particularly emphasized by Zhang (2003) 

[52], Ince and Trafalis (2006) [22], and Chen et al. (2012) [9]. 
Guo et al. (2012) [19] combined EMD with neural networks 
to enhance wind speed forecasting, while Abadan and 
Shabri (2014) [1] showed that EMD-ARIMA improved rice 
price forecasts. Choudhary et al. (2019) [10] demonstrated 
that EEMD-TDNN outperformed TDNN for potato prices. 
Das et al. (2020) [13] reported the superiority of EMD-SVR 
over standard SVR. Silva et al. (2021) [37] highlighted the 
effectiveness of ensemble techniques for corn and sugar, 
and Purohit et al. (2021) [30] applied hybrid methods to 
tomato, onion, and potato markets. Khan et al. (2022) [23] 
employed EEMD for short-term forecasts, while Zelingher 
and Makowski (2023) [51] demonstrated hybrid effectiveness 
in maize and cocoa markets. More recent studies further 
confirm these advancements: Shobharani et al. (2024) [36] 
found TDNN and hybrid approaches outperforming 
SARIMA for tomato and capsicum, and Mao and 
Soonthornphisaj (2024) [27] showed that ensemble models 
improved maize price prediction in Thailand. 
Despite these developments, onion export price forecasting 
remains relatively underexplored. This study addresses this 
gap by evaluating hybrid forecasting frameworks for Indian 
onion export prices with key objectives: To assess the 
robustness of hybrid ML models in volatile vegetable 
markets, and to provide actionable guidance for model 
selection and trade-related decision-making. 
 
2. Methods and Materials 
2.1 Data source 
This study used monthly export price data for Indian onions 
(₹/Quintal) from January 2008 to December 2021, collected 
from the Agricultural and Processed Food Products Export 
Development Authority (APEDA). As shown in figure 3, 
data were split into training and testing sets, the first 156 

observations were utilized for model building and last 12 
data points were used for validation purpose. Pre-
processing, modelling, and evaluation were performed using 
Python (v3.5), and R (v4.3.2) with packages such as 
forecast, t series, caret, e1071, EMD, and Rlibeemd. 

 
2.2 Autoregressive Integrated Moving Average (ARIMA) 
This model is one of the most widely used approaches for 
time series forecasting. It is denoted as ARIMA (p, d, q), 
where p represents the autoregressive order, d is the degree 
of differencing, and q is the moving average order, defined 
in equation 2.2.1. ARIMA is particularly useful for 
modelling non-stationary linear time series. For seasonal 
data, the model is extended to the Seasonal ARIMA 
(SARIMA), denoted as ARIMA (p, d, q)(P, D, Q)s, where 
(P, D, Q) are the seasonal parameters and s is the seasonal 
period, it is stated in equation 2.2.2 (Box et al., 1976). 
 
𝜑𝜑(𝐵𝐵)∆𝑑𝑑𝑦𝑦𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝑢𝑢𝑡𝑡  (2.2.1) 
 
(∆𝑠𝑠)𝐷𝐷𝜑𝜑(𝐵𝐵)Φ(𝐵𝐵𝑠𝑠)𝑦𝑦𝑡𝑡 = 𝜃𝜃(𝐵𝐵)Θ(𝐵𝐵𝑠𝑠)𝑢𝑢𝑡𝑡 (2.2.2) 
 
Where 𝑦𝑦𝑡𝑡 is the value of the price series at time t, 𝑢𝑢𝑡𝑡is the 
disturbance term at time t which is assumed to be IID with 
mean zero and constant variance 𝜎𝜎2, the backshift operator 
B is defined by (𝐵𝐵)𝑦𝑦𝑡𝑡 = 𝑦𝑦𝑡𝑡−1 , ∆= (1 − 𝐵𝐵) the differencing 
operator, (∆𝑠𝑠)𝐷𝐷 = (1 − 𝐵𝐵𝑠𝑠)𝐷𝐷 is seasonal differencing 
operator. The polynomials are defined as: 𝜑𝜑(𝐵𝐵) = 1 −
𝜑𝜑1𝐵𝐵 − 𝜑𝜑2𝐵𝐵2 −⋯−  𝜑𝜑𝑝𝑝𝐵𝐵𝑝𝑝 (autoregressive), 𝜃𝜃(𝐵𝐵) =  1 +
𝜃𝜃1𝐵𝐵 + 𝜃𝜃2𝐵𝐵2 + ⋯+ 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞 (moving average), Φ(𝐵𝐵𝑆𝑆) =
 1 −Φ1𝐵𝐵𝑠𝑠 − Φ2𝐵𝐵2𝑠𝑠 − ⋯−
 Φ𝑃𝑃𝐵𝐵𝑃𝑃𝑃𝑃(seasonal autoregressive) and Θ(𝐵𝐵𝑠𝑠) =  1 +
Θ1𝐵𝐵𝑠𝑠 + Θ2𝐵𝐵2𝑠𝑠 + ⋯+ Θ𝑄𝑄𝐵𝐵𝑄𝑄𝑄𝑄 (seasonal moving average). 
Where the degrees of the polynomials are p, q, in B, and P, 
Q for 𝐵𝐵𝑠𝑠 respectively. 
 
2.3 Time delay neural networks (TDNNs) 
ANNs are human brain-inspired models that capture time 
series characteristics using data-driven, nonlinear, and non-
parametric methods, unlike traditional forecasting methods. 
Neural networks consist of three interconnected neuron 
layers, where each layer receives input from the previous 
one and sends output to the next (Singh, 2021) [38]. 
Nonlinear activation functions are applied at hidden nodes 
to transform weighted inputs, introduce nonlinearity, and 
regulate output values. During training, the network learns 
optimal weights and biases stored in its nodes, which 
determine the mapping between inputs and outputs. The 
number of input neurons corresponds to the number of 
lagged values used as predictors, while hidden nodes 
process their weighted sums through nonlinear 
transformations (Li et al., 2010) [26]. Mathematically, 
forward propagation is expressed as: 
 
𝑦𝑦𝑡𝑡 =  𝛼𝛼0 + ∑ 𝛼𝛼𝑗𝑗

𝑞𝑞
𝑗𝑗=1 𝑔𝑔�𝛽𝛽0𝑗𝑗 + ∑ 𝛽𝛽𝑖𝑖𝑖𝑖

𝑝𝑝
𝑖𝑖=1 𝑦𝑦𝑡𝑡−𝑖𝑖� + 𝜀𝜀𝑡𝑡  (2.3.1) 

 
Where p and q are the number of input layers and hidden 
nodes, 𝑦𝑦𝑡𝑡−1, 𝑦𝑦𝑡𝑡−2, 𝑦𝑦𝑡𝑡−3….,𝑦𝑦𝑡𝑡−𝑝𝑝 are the input patterns, 𝛽𝛽𝑖𝑖𝑖𝑖 is 
the synaptic weight between the ith input neuron and jth 
hidden neuron, 𝛼𝛼𝑗𝑗 is the weight between the jth hidden 
neuron and the output neuron, 𝛽𝛽0𝑗𝑗 and 𝛼𝛼0 is the bias, 𝑔𝑔(.) 
are the activation functions of hidden nodes, respectively 
(Ahmed, 2025) [3]. 
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2.4 Support Vector Regression (SVR) 
SVR introduced by Vapnik (1998) [43], extends SVM to 
regression tasks using a loss function. It’s working process 
is shown in figure 1, and the basic linear SVR model is 
defined as: 
 
𝑦𝑦 = 𝑤𝑤𝑇𝑇𝜙𝜙(𝑥𝑥) + 𝑏𝑏  (2.4.1) 
 
Where 𝑤𝑤 defines the weight vector, 𝜙𝜙 denotes mapping 
function, and 𝑏𝑏 is bias, these parameters are estimated by 
minimizing a regularized risk function: 
 
𝑅𝑅(𝜃𝜃) = 1

2
‖𝑤𝑤‖2 + 𝑐𝑐 � 1

𝑁𝑁
∑ 𝐿𝐿𝜀𝜀�𝑦𝑦𝑖𝑖 ,𝑓𝑓(𝑥𝑥𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 �  (2.4.2) 

 
Here, 1

2
‖𝑤𝑤‖2 controls model complexity, 

�1
𝑁𝑁
∑ 𝐿𝐿𝜀𝜀�𝑦𝑦𝑖𝑖 ,𝑓𝑓(𝑥𝑥𝑖𝑖)�𝑁𝑁
𝑖𝑖=1 � called ‘empirical error’ is estimated 

by Vapnik ε-insensitive loss function: 
 
𝐿𝐿𝜀𝜀�𝑦𝑦𝑖𝑖 ,𝑓𝑓(𝑥𝑥𝑖𝑖)� = �|𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)| −  ε, |𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)| ≥  ε 

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
 (2.4.3) 

 
Here, both c and ε are user-determined hyper-parameters, ε  

defines a tolerance margin around the regression function, 
while c is a regularization constant balancing flatness and 
error tolerance (Singla et al., 2021) [39]. 
To allow some training errors, slack variables (𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖

∗) are 
introduced, leading to the primal optimization problem: 
 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀: 𝑅𝑅𝑝𝑝(w, b, 𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖

∗) = 1
2
‖𝑤𝑤‖2 + 𝐶𝐶[ ∑ (𝜉𝜉𝑖𝑖 + 𝜉𝜉𝑖𝑖

∗)𝑁𝑁
𝑖𝑖=1 ]  (2.4.4) 

 
Subject to the constraints 
 

�
𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) + 𝑏𝑏 − 𝑦𝑦𝑖𝑖 ≤  ε + 𝜉𝜉𝑖𝑖

∗ 
𝑦𝑦𝑖𝑖 − 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥𝑖𝑖) − 𝑏𝑏 ≤  ε + 𝜉𝜉𝑖𝑖

∗

𝜉𝜉𝑖𝑖 , 𝜉𝜉𝑖𝑖
∗  ≥ 0; i = 1,2, … . , N

  

 
This concept known as soft margin regression. For nonlinear 
problems, SVR employs the kernel trick, replacing the dot 
product in feature space with a kernel function K(𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗) = 
⟨ϕ(𝑥𝑥𝑖𝑖),ϕ(𝑥𝑥𝑗𝑗)⟩. This enables efficient learning of nonlinear 
relationships without explicitly mapping to high dimensions. 
Among available kernels, the Radial Basis Function (RBF) 
is widely used for time series and price forecasting tasks 
(Das et al., 2019) [11]. 

 

 
 

Fig 1: Working procedure of SVR Model 
 

2.5 Empirical mode decomposition (EMD) 
EMD is a type of adaptive time series decomposition 
approach used for nonlinear and non-stationary time series 
data. The method decomposes a series into a finite set of 
Intrinsic Mode Functions (IMFs) and a final residue (Huang 
et al., 1998) [20]. Each IMF represents an oscillatory mode 
with unique amplitude and frequency modulation, and it 
must satisfy two conditions: (i) the number of extrema and 
zero-crossings should be nearly equal, and (ii) the mean of 
the envelopes defined by local maxima and minima should 
be zero (Sonam and Kumar, 2017) [40]. The original series 
can then be reconstructed as: 

 
𝑦𝑦(𝑡𝑡) = ∑ ℎ𝑖𝑖(𝑡𝑡)𝑛𝑛

𝑖𝑖=1 + 𝑟𝑟(𝑡𝑡)  (2.5.1) 
 
Steps of EMD 
1. Identify all local maxima and minima of the series. 

2. Interpolate maxima and minima using cubic splines to 
form the upper and lower envelopes. 

3. Compute the local mean 
 
𝑚𝑚1(𝑡𝑡) = [𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡) +𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡)]/2  (2.5.2) 
 
4. Subtract the mean from the original series 
 
ℎ1(𝑡𝑡)= 𝑦𝑦(𝑡𝑡)-𝑚𝑚1(𝑡𝑡)  (2.5.3) 
 
5. If ℎ1(𝑡𝑡)satisfies the IMF conditions, it is considered as 

the first IMF. If not, steps 1 to 4 are repeated by treating 
 ℎ1(𝑡𝑡) as the new input, until the remainder becomes a 
monotonic function and no more IMF can be extracted. 

 
The possible number of IMFs that can be extracted from a 
time series is approximately 𝑙𝑙𝑙𝑙𝑙𝑙2N, Where N denotes the 
length of the series (Wu and Huang, 2009) [46]. While EMD 
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effectively captures hidden oscillatory patterns in non-
stationary agricultural price data, a major limitation is the 
mode mixing problem, where signals of different scales 
appear in a single IMF. This reduces the interpretability of 
the decomposition (Sezen, 2023) [35]. 
 
2.6 Ensemble empirical mode decomposition (EEMD) 
Wu and Huang (2009) [46] introduced EEMD as an improved 
version of EMD to overcome the issue of mode mixing. In 
EEMD, white noise is repeatedly added to the original 

series, decomposed with EMD, and then averaged across 
trials to extract the true IMFs and residue. The working 
process is illustrated in Figure 2, and the final 
decomposition is represented as: 
 
𝑦𝑦(𝑡𝑡)=∑ ℎ𝑗𝑗𝑛𝑛

𝑗𝑗=1  (𝑡𝑡)+ 𝑟𝑟(𝑡𝑡)  (2.6.1) 
 
Where ℎ𝑗𝑗(𝑡𝑡) , j=1,2…..n are the final IMFs and r(t) is the 
residue. 

 

 
 

Fig 2: EEMD Algorithm Working procedure 
 

3. Results and Discussion 
In order to predict the prices of export onion, the dataset was 
pre-processed, a few missing values were imputed using the 
mean imputation method in R with the imputeTS package to 
ensure accuracy and consistency. Descriptive statistics 
(Table 1) revealed large fluctuations, with prices ranging 
from ₹271.57 to ₹11,405.45 per quintal and a high 
coefficient of variation (72.16%), reflecting substantial 
instability. The time plot (Figure 3) clearly revealed the 
presence of trend and volatility, while the seasonal boxplot 
(Figure 4) confirmed seasonality, and the ACF and PACF 

plots (Figure 5) indicated non-stationarity. Formal statistical 
tests further supported these findings: Shapiro-Wilk test (p< 
0.01) Rejected normality, the Ljung-Box test (p< 0.01) 
confirmed significant autocorrelation, the KPSS test (Table 
2) Indicated non-stationarity in original series but 
stationarity after first differencing, and the BDS test (Table 
3) Confirmed the presence of nonlinearity (p< 0.01 across 
all dimensions). Collectively, these results confirm the data's 
complexity and justify the use of advanced forecasting 
methods. 

 

 
 

Fig 3: Monthly onion export price series 
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Table 1: Descriptive Statistics of Monthly Onion Export Prices (₹/Qtl) 
 

Statistical Measures Export 
Mean 2005.583 

Minimum 271.572 
Maximum 11405.453 

Standard Deviation 1447.274 
Skewness 3.123 
Kurtosis 13.331 

Coefficient of variation 72.166 
Shapiro-Wilk test (w) 0.682** 

Ljung-Box test 63.621** 
Note: ** significant at the 1% level of significance 

 

 
 

Fig 4: Seasonal box plot of onion prices in the export market 
 

 
 

Fig 5: ACF and PACF plots of the original and transformed onion export price series 

Table 2: KPSS test results for onion Price in Export Market 
 

Nature of series KPSS level Truncation lag parameter p- value Conclusion 
Original series 0.782 4 0.01 Non-stationarity 
After 1st diff 0.012 4 0.1 Stationarity 
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Table 3: BDS test results for testing linearity of data series 
 

 Dimension (m=2) Dimension (m=3) Conclusion Parameter Statistic Probability Statistic Probability 
723.635 0.203 < 0.01 16.353 < 0.01 

Non linear 1447.270 10.540 < 0.01 10.167 < 0.01 
2170.904 8.954 < 0.01 8.552 < 0.01 
2894.539 6.589 < 0.01 6.379 < 0.01 

 
Following the identification of nature of date series, several 
traditional forecasting models were applied, including 
ARIMA, TDNN and SVR. Their predictive performance on 
the test dataset is reported in Table 4. An ARIMA (1,1,1) 
(0,0,2) [12]

 model was selected as optimal based on its low 
AIC value, and its residuals passed diagnostic checks for 
white noise. However, consistent with the BDS test results, 
its linear structure failed to capture the dataset nonlinear 
dynamics. Subsequently, machine learning models (ANN 
and SVM) were used to address this limitation. 
After conducting several iterations with different nodes, the 
optimal ANN architecture was determined to be (12: 
6S:1L), consisting of 12 input nodes, 6 hidden nodes with 
Tanh activation function, and 1 output node, based on their 
holdout forecasting performance. The RMSE of the training 
set (213.03) indicated strong in-sample performance, 
whereas the substantially larger RMSE of the test set 
(1643.08) confirmed overfitting (Table 5). In contrast, SVR, 

tuned via 10-fold cross-validation including an RBF kernel 
with the hyper parameters (Cost = 1, Gamma = 0.1, Epsilon 
= 0.1), achieved better robustness and higher predictive 
accuracy than TDNN, as shown in Figures 9 and 10. 
To enhance prediction accuracy, hybrid models using EMD 
and EEMD decomposition were applied. The series was 
decomposed into six IMFs and one residual (Figures 6-7), 
where amplitudes decreased from IMF1 to IMF6 and the 
residual captured the random trend. This decomposition 
revealed hidden patterns, improving the forecasting 
performance of ARIMA, TDNN, and SVR (Das et al., 
2023) [12]. Each decomposed dataset was modeled as in the 
single-model approach, and final fitted results are then 
obtained following the procedure outlined in section 2.5 and 
2.6 of the methodology. The results (Table 4) indicated that 
the EEMD-SVR model produced forecasts closer to the test 
data than the other models, as illustrated in Figure 8, 
effectively capturing both linear and nonlinear dynamics. 

 

 
 

Fig 6: EMD components of monthly export onion price 
 

 
 

Fig 7: EEMD components of monthly export onion price 
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Table 4: Forecasted values of the export onion prices using different models 
 

Time Test ARIMA EMD-ARIMA EEMD-ARIMA TDNN EMD-TDNN EEMD-TDNN SVR EMD-SVR EEMD-SVR 
Jan-21 2912.772 2135.977 2215.123 2635.244 3108.443 2272.953 2391.306 3893.908 2034.806 3660.807 
Feb-21 3650.996 6125.156 2752.232 3742.896 5223.323 2306.568 1555.354 3071.966 660.1495 3209.602 
Mar-21 2248.038 3020.415 3439.036 3078.639 1598.3 2967.874 1363.932 4333.064 1295.059 2535.957 
Apr-21 1694.196 2845.153 2788.226 3264.777 1380.299 3243.568 2147.729 2229.542 1652.97 2421.013 
May-21 1953.881 2307.903 3008.195 2657.269 1471.921 4373.173 2788.795 1715.816 2042.65 2341.839 
Jun-21 2228.614 2101.044 3729.831 3483.767 2895.819 5995.593 3739.343 1957.557 1398.867 2411.726 
Jul-21 2202.52 1952.583 3949.5 3817.076 2866.374 7450.691 3851.552 2210.828 1863.424 2401.206 

Aug-21 2317.634 2008.745 3787.77 3963.268 1820.009 3777.488 2929.447 2185.962 2103.546 2467.861 
Sep-21 2176.981 2157.485 3673.601 3758.823 2746.535 2076.5 2383.603 2298.292 2260.75 2469.529 
Oct-21 2637.548 6379.426 3610.843 3543.069 6265.09 2970.772 3287.193 2161.893 2404.513 2662.228 
Nov-21 2604.104 8374.231 3471.276 3905.936 6381.878 1554.735 3265.069 2665.853 2494.247 2864.872 
Dec-21 2538.223 3664.267 3290.19 3562.891 3033.048 1389.186 2619.418 2622.499 3089.186 2989.186 

 

 
 

Fig 8: Forecasted values of the export onion prices using different models 
 

The predictive performance of nine models for forecasting 
onion export prices was evaluated using RMSE and MAPE 
metrics (Table 5). The results indicate that hybrid machine 
learning models consistently outperformed traditional 
benchmarks, with the EEMD-SVR model achieving the 
highest accuracy. Its superiority is visually confirmed by 
radar plots, which show consistently lower RMSE (405.09) 
and MAPE (14.93%) values compared to other models 
(Figures 9-10). To further assess the superiority of EEMD-

SVR, The Diebold-Mariano test was conducted under the 
alternative hypothesis that EEMD-SVR outperforms the 
other hybrid models in forecasting accuracy. The p-values 
reported in Table 6 confirm that EEMD-SVR was 
significantly more accurate than all other hybrids. The 
enhanced performance of EEMD-SVR can be attributed to 
the decomposition process, which isolates and identifies 
distinct features of price volatility, improving the 
forecasting process. 

 
Table 5: Comparative assessment of prediction performance of different models 

 

Set TEST ARIMA EMD-
ARIMA 

EEMD-
ARIMA TDNN EMD-

TDNN 
EEMD-
TDNN SVR EMD-

SVR EEMD-SVR 

Train RMSE 1078.71 953.31 846.36 213.03 181.77 172.25 882.12 718.34 582.36 
MAPE (%) 28.54 27.23 26.96 8.32 8.44 8.36 14.85 21.90 16.25 

Test RMSE 2479.80 1363.71 1179.47 1643.08 1266.35 1026.00 726.36 994.14 405.09 
MAPE (%) 70.06 54.036 47.97 44.30 47.45 34.65 19.46 21.82 14.93 

 
Table 6: Diebold Marino test results EEMD-SVR vs other hybrid models 

 

Test comparison EMD-ARIMA EEMD-ARIMA EMD-TDNN EEMD-TDNN EMD-SVR 

EEMD-SVR Test statistic 4.681 3.987 2.188 1.942 1.532 
p value 0.0003 0.001 0.039 0.041 0.053 
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Fig 9: RMSE values for test data of export onion prices 
 

 
 

Fig 10: MAPE values for test data of export onion prices 
 
4. Conclusion 
Farmers and traders can reduce losses with advance price 
information, which is especially important for perishable 
crops like tomatoes, onions, and potatoes. In this study, we 
forecast onion export prices using hybrid machine learning 
and classical models, focusing on handling both 
nonstationary and nonlinear data. We used decomposition 
techniques, EMD and EEMD, to break the series into 
simpler components, predicted them with ARIMA, TDNN, 
and SVR, and combined the results for the final forecast. 
EEMD improved prediction accuracy compared to EMD. 
Some small errors may occur due to external factors like 
weather. Accurate forecasts help farmers make better 
decisions on production and marketing, and assist the 
government in planning import and export policies. 
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