



ISSN Print: 2617-4693

ISSN Online: 2617-4707

NAAS Rating (2026): 5.29

IJABR 2026; 10(1): 212-215

www.biochemjournal.com

Received: 12-10-2025

Accepted: 16-11-2025

Harneet Kour

Department of Veterinary
Medicine, SKUAST, Jammu,
Jammu and Kashmir, India

Ravdeep Singh

Department of Veterinary &
Animal Husbandry Extension
Education, SKUAST, Jammu,
Jammu and Kashmir, India

Rajesh Agrawal

Department of Veterinary
Medicine, SKUAST, Jammu,
Jammu and Kashmir, India

Evaluation of functional capacity in obese, overweight and normal dogs using six-minute walk test

Harneet Kour, Ravdeep Singh and Rajesh Agrawal

DOI: <https://www.doi.org/10.33545/26174693.2026.v10.i1c.6913>

Abstract

Obesity is a growing health concern in companion animals and is associated with reduced longevity, impaired quality of life, and increased risk of cardiovascular and respiratory dysfunction. The present study evaluated the effect of obesity on functional capacity and exercise-induced cardiac responses in dogs using the Six-Minute Walk Test (6-MWT) and electrocardiography (ECG). A total of 124 client-owned Labrador retrievers presented to the Teaching Veterinary Clinical Complex, SKUAST-Jammu were assessed. Dogs were categorized as normal, overweight, or obese based on body weight, body condition score, and body fat percentage. Functional capacity was assessed by measuring the distance walked during the 6-MWT, along with changes in heart rate, respiration rate, and ECG parameters before and after exercise. Obese dogs walked significantly shorter distances compared to normal dogs and exhibited higher post-exercise heart and respiration rates, indicating reduced exercise tolerance. Distance walked showed a significant negative correlation with body fat percentage, body weight, and body condition score. The study demonstrates that obesity markedly impairs functional capacity and alters cardiac responses in dogs, and validates the 6-MWT as a simple, reliable tool for assessing functional capacity in obese and cardiopulmonary-compromised dogs.

Keywords: Six-minute walk test, canine obesity, functional capacity

Introduction

There is an increasing trend in the incidence of obesity in the pet population (McGreevy *et al.*, 2005) [20] with 25-35 per cent obese (Greco, 2002) [11] and up to 39 per cent overweighted dogs (Lund *et al.*, 2006 and Courcieret *et al.*, 2010) [16, 7]. Obesity causes detrimental impact on dog's health, longevity and quality of life by reduction in median life expectancy by 15 per cent (2 years) in obese dogs (Hand *et al.*, 2010) [13]. Obese dogs generally present signs of constant panting, respiration distress, increased heart rate, struggles with stairs, lethargy and heat intolerance. One of the earliest and most significant consequences for both human and veterinary patients with chronic respiratory or cardiac disease is the reduced ability to perform normal daily activities, also known as the functional capacity (FC) (Singh, 2007) [23]. The 6-Minute Walk Test (6MWT) performed by measuring the distance an individual can walk comfortably in 6 minute (Enright, 2003) [10] has also been evaluated in dogs (Agudelo and Schanilec, 2013) [1] and has been found to be able to discriminate between healthy dogs and dogs with cardiac and pulmonary disease. Despite the growing prevalence of canine obesity, limited information is available regarding its effect on functional capacity and exercise-induced cardiac responses. Therefore, the present study was designed to evaluate functional capacity in normal, overweight and obese dogs using the 6-MWT and to correlate walking performance with clinical, and morphometric parameters.

Materials and Methods

The study was conducted on 124 client-owned Labrador retriever dogs presented to the Teaching Veterinary Clinical Complex, SKUAST-Jammu. Dogs of different ages and gender were included. Animals with overt cardiac, respiratory, neurological or orthopaedic disorders were excluded.

Assessment of obesity**1. Body weight**

The body weight of the dogs was measured using electronic weighing machine. The approximate body weight of Labrador retrievers was set as 65 to 80 lb (29.48-36.28 kg) for

Corresponding Author:**Harneet Kour**

Department of Veterinary
Medicine, SKUAST, Jammu,
Jammu and Kashmir, India

males and 55 to 70 lb (25-31.75 kg) for females as per Burr *et al.* (2002) [5]. The dogs having body weight in excess of 10-15% of ideal body weight were considered as overweight whereas those having body weight in excess of 20-25% were considered as obese (Mawby *et al.*, 2004) [19].

2. Body condition score

Body condition score of dogs was assessed by 5- point scale as described by Lund *et al.* (1999) [15]

3. Body Fat Percentage

Body fat percentage (BF%) of dogs was calculated using gender specific formula as given by Burkholder and Toll (2000) [4] and Mawby *et al.* (2004) [19].

- A. Male body Fat (%) = -1.4 (HS) + 0.77 (PC) + 4
- B. Female body Fat (%) = -1.7 (HS) + 0.93 (PC) + 5

PC (Pelvic circumference) and HS (Hock to Stifle)

The normal reference ranges for body fat percentage were set at 15%-22% for male (neutered/non-neutered) dogs and at 15%-25% for female (nonspayed/spayed) dogs. Body fat percentage exceeding 22% in males and 25% for females was considered overweight and obese (Li *et al.*, 2012) [14].

Six-Minute Walk Test

Functional capacity was evaluated by performing six minute walk test (6-MWT) on dogs as described by Manens (2014) [17]. Before starting the 6-MWT, basal clinical heart rate, respiratory rate and ECG were obtained. After a few minutes of acclimatization, dogs were allowed to walk at their own pace for 6 min, along an unobstructed 18.6mt long hallway. Dogs were walked when there were no other people or animals around that could represent a potential distraction. Heart rate, respiration rate was recorded immediately after the test to assess the quality of life. The total walked distance was measured and reported in meters (mt).

Statistical Analysis

The mean values of heart rate and respiration rate of clinical cases at rest and after the 6-minute walk test was compared using student-t test. In survey dogs, one way analysis of variance and Tusky's HSD test was used to compare mean values of heart rate and respiration rate at rest and after 6-minute walk test.

Results and Discussion

Overall prevalence of obesity

Obesity in dogs was classified on the basis of body fat percentage (Table 1).

Table 1: Overall prevalence of obesity among surveyed dogs (n = 124)

Weight categories (BF%)	Number of dogs (n)	Percentage (%)
Normal dogs (15.73-27.96)	41	33.06
Overweight dogs (27.16-31.77)	20	16.13
Obese dogs (32.05-65.35)	63	50.81

Figure in parenthesis indicate range of body fat percentage

Functional capacity test variables in dogs

Distance walked

In 6 MWT, the obese dogs (201.80 ± 4.67 vs. 337.66 ± 6.34 mt) (Table 2) walked much shorter distance as compared to the normal dogs. Similar finding was observed by Manens *et al.* (2014) [17] who recorded that obese dogs walked shorter distances than lean dogs (obese: 509 ± 35 m; overweight: 575 ± 36 ms; lean: 589 ± 36 m). Other workers observed that normal healthy dogs walked longer distance than dogs with cardiopulmonary dysfunctions [Boddy *et al.* 2004 (573 ± 85.5 vs. 526 ± 99.4 mt)] [21], Swimmer and Rozanski, 2011 (522.7 ± 52.4 vs. 384.8 ± 41.0 mt) [24]. The obese subjects exhibited slower gait speeds with shorter stride length, poor limb power test and poor endurance (Pataky *et al.*, 2014) [22]. The changes in body conformation cause decrease in activity counts (Brown *et al.*, 2010) [3] and a shorter distance walked was associated with several cardiovascular risk markers including higher levels of total cholesterol and LDL (Ekman *et al.*, 2013) [9].

Heart rate and Respiration rate in functional capacity test

In the present study it was seen that the mean heart rate (107.48 ± 1.98 , 106.25 ± 3.84 vs. 92.17 ± 1.46 beats/min) of obese and overweight dogs was significantly ($P < 0.01$) higher after 6-MWT as compared to normal dogs (Table 2) which coincided with the findings of Guyton and Hall (2004) [12]. A higher heart rate in dogs with cardiopulmonary diseases has been reported by others [Boddy *et al.*, 2004 (150 ± 24.2 vs. 133 ± 21.3 beats/min)] [2]. Obese dogs showed panting more often in comparison to normal dogs, which may be attributed to decreased tidal volumes leading to a rapid and shallow pattern of respiration to maintain constant minute ventilation. The higher HR observed in obese dogs at rest as well as after walk test additionally indicates the chronic hormonal activation that accompanies heart disease (Di Thommazo-Luporini *et al.*, 2012) [8]. The study further validates the simple and user friendly 6MWT that would represent a major addition to the armamentarium of clinical veterinary cardio-pulmonary function testing for pet dogs (Swimmer and Rozanski, 2011) [24].

Table 2: Functional capacity test variables

Parameters	Normal dogs (n=41)	Overweight dogs(n=20)	Obese dogs (n=63)	P value (within row)	P value (within column)
Distance walked (mt)	337.66 ± 6.34^a (223.20- 398.6)	246.53 ± 11.69^b (167.4- 372)	201.80 ± 4.67^c (111 - 16.20)	0.000	-
Heart rate at rest (beats/min)	79.92 ± 1.15^{ax} (70-102)	88.40 ± 2.85^{bx} (70 - 132)	89.30 ± 1.84^{cx} (68 - 145)	0.000	0.000
Heart rate after 6 -MWT (beats/min)	92.17 ± 1.46^{ay} (80 - 110)	106.25 ± 3.84^{by} (83-155)	107.48 ± 1.98^{cy} (84-175)	0.000	0.000
Respiration rate at rest (breathe /min)	35.93 ± 0.97^{ax} (24-48)	40.00 ± 3.13^{abx} (24-80)	40.81 ± 1.36^{bx} (21-70)	0.056	0.000
Respiration rate after 6 -MWT (breathe /min)	51.19 ± 1.29^{ay} (34-68)	55.25 ± 3.61^{aby} (38-102)	56.71 ± 1.33^{by} (36-82)	0.045	0.000

Figures in parenthesis range

Different superscripts ^{a, b, c} indicate significant difference at $P < 0.05$ within a row

Different superscripts ^{x, y} indicate significant difference at $P < 0.05$ within column

Correlation (r) between distance walked and morphometric parameters:

The present study revealed that distance walked showed a significant ($P<0.05$) negative correlation with BF% ($r = -0.310$) and body weight ($r = -0.334$) and body condition score ($r = -0.459$) (Table 3); which confirmed that the obese dogs had reduced functional activity expressed as exercise intolerance and worse performance of normal daily

activities which has been reported in earlier studies (Singh, 2007) [23]. Chan *et al.* (2005) [6] and Weber (2011) [25] reported that body condition score was inversely correlated with physical activity. Generally obese dogs are less vigorously active than normal dogs (Morrison, 2015) [21]. Manens *et al.* (2012) [18] found that obesity negatively affects 6 MWT performances in dogs.

Table 3: Correlation (r) between distance walked and morphometric parameters

Morphometric parameters	Distance walked		
	Normal dogs (n=41)	Overweight dogs (n=20)	Obese dogs (n=63)
BF%	-0.041 (0.798)	-0.506* (0.023)	-0.310* (0.013)
BW	-0.098 (0.543)	-0.471* (0.036)	-0.334** (0.007)
MBMI	-0.070 (0.664)	-0.358 (0.121)	-0.223 (0.079)
WHSDR	0.124 (0.440)	-0.132 (0.578)	-0.127 (0.320)
WIWDR	0.065 (0.686)	0.197 (0.405)	-0.018 (0.886)
WTLR	-0.068 (0.672)	-0.221 (0.349)	-0.231 (0.068)
BCS	-	-	-0.459** (0.000)

**Significant correlation at the 0.01 level (2-tailed)

*Significant correlation at the 0.05 level (2-tailed)

Figures in parenthesis indicate P value

Conclusion

Abdominal obesity was significantly functional changes in the dogs. The 6- MWT was an effective method of screening for exercise intolerance and cardiopulmonary function with ability to perform daily activity in obese dogs.

References

1. Agudelo CF, Schanilec P. Evaluation of functional capacity in dogs with naturally acquired heart disease. *Vet Med*. 2013;58(5):264-270.
2. Boddy KN, Roche BM, Schwartz DS, Nakayama T, Hamlin RL. Evaluation of the six-minute walk test in dogs. *Am J Vet Res*. 2004;65:311-313.
3. Brown DC, Michel KE, Love M, Dow C. Evaluation of the effect of signalment and body conformation on activity monitoring in companion dogs. *Am J Vet Res*. 2010;71(3):322-325.
4. Burkholder WJ, Toll PW. Obesity. In: Hand MS, Thatcher CD, Remillard RL, Roudebush P, Novotny B, editors. *Small animal clinical nutrition*. 4th ed. Topeka (KS): Mark Morris Institute; Marceline (MO): Mark Morris Institute; 2000. p. 401-430.
5. Burr J, David D, Dunlap B, Feazell M, Foote M, Mann N, Miller D, Ziessow B. *The Labrador Retriever illustrated standard*. The Labrador Retriever Club; 2002. p. 1-23.
6. Chan CB, Spierenburg M, Ihle SL, Locke CT. Use of pedometers to measure physical activity in dogs. *J Am Vet Med Assoc*. 2005;226:2010-2015.
7. Courcier EA, Thomson RM, Mellor DJ, Yam PS. An epidemiological study of environmental factors associated with canine obesity. *J Small Anim Pract*. 2010;51(7):362-367.
8. Di Thommazo-Luporini L, Jurgensen SP, Castello-Simoes V, Catai AM, Arena R, Borghi-Silva A. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women. *Rev Bras Fisioter*. 2012;16:469-478.
9. Ekman MJ, Klintenberg M, Bjorck U, Norstrom F, Ridderstrale M. Six-minute walk test before and after a weight reduction program in obese subjects. *Obesity*. 2013;21:E236-E243.
10. Enright PL. The six-minute walk test. *Respir Care*. 2003;48(8):783-785.
11. Greco DS. Life is shorter, if you eat dessert first: clinical implications of the Purina study. *Proc Purina Pet Inst Symp*. 2002;St. Louis:30-32.
12. Guyton AC, Hall JE. The heart. In: *Textbook of medical physiology*. 10th ed. Philadelphia: WB Saunders; 2004. p. 106.
13. Hand M, Thatcher C, Remillard R, Roudebush P, Novotny B. *Obesity in dogs. Small animal clinical nutrition*. 5th ed. Marceline (MO): Mark Morris Institute; 2010.
14. Li G, Lee P, Mori N, Yamamoto I, Kawasumi K, Tanabe H, Arai T. Supplementing five-point body condition score with body fat percentage increases the sensitivity for assessing overweight status of small- to medium-sized dogs. *Vet Med Res Rep*. 2012;3:71-78.
15. Lund EM, Armstrong PJ, Kirk CA, Kolar LM, Klausner JS. Health status and population characteristics of dogs and cats examined at private veterinary practices in the United States. *J Am Vet Med Assoc*. 1999;214:1336-1341.
16. Lund EM, Armstrong PJ, Kirk CA, Klausner JS. Prevalence and risk factors for obesity in adult dogs from private US veterinary practices. *Int J Appl Res Vet Med*. 2006;4:177-186.
17. Manens J, Ricci R, Damoiseaux C, Gault S, Contiero B, Diez M, Clercx C. Effect of body weight loss on cardiopulmonary function assessed by 6-minute walk test and arterial blood gas analysis in obese dogs. *J Vet Intern Med*. 2014;28:371-378.
18. Manens J, Bolognin M, Bernaerts F, Diez M, Kirschvink N, Clercx C. Effects of obesity on lung function and airway reactivity in healthy dogs. *Vet J*. 2012;193:217-221.
19. Mawby DI, Bartges JW, d'Aignon A, Laflamme P, Moyers TD, Cottrel T. Comparison of various methods of estimating body fat in dogs. *J Am Anim Hosp Assoc*. 2004;40(2):109-114.

20. McGreevy PD, Thomson PC, Pride C, Fawcett A, Grass T, Jones B. Prevalence of obesity in dogs examined by Australian veterinary practices and the risk factors involved. *Vet Rec.* 2005;156:695-702.
21. Morrison R. Physical activity and sedentary behavior in humans and pet dogs [PhD thesis]. Glasgow: University of Glasgow; 2015.
22. Pataky Z, Armand S, Müller-Pinget S, Golay A, Allet L. Effects of obesity on functional capacity. *Obesity (Silver Spring).* 2014;22(1):56-62.
23. Singh S. Walking for the assessment of patients with chronic obstructive pulmonary disease. *Eur Respir Monogr.* 2007;40:148-164.
24. Swimmer RA, Rozanski EA. Evaluation of the 6-minute walk test in pet dogs. *J Vet Intern Med.* 2011;25(2):405-406.
25. Weber DIS. Objectively measured free-living physical activity in pet dogs: relationship to body condition score and owner-pet activity [MSc thesis]. Fort Collins (CO): Colorado State University; 2011.