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Abstract 

The application of endophytic microorganisms for the protection of plant against to several diseases 

represents a significant contribution in sustainable agriculture. These endophytes live within internal 

plant parts and interact to their surrounds without causing any harmful effect and establishment through 

symbiotic relationship that can induce plant defence system. Endophytic bacteria and fungi have shown 

not only inhibit a wide range of phytopathogens, viz., bacteria, fungi, and viruses, through the 

production of bioactive metabolites substances, competition for habitat, space and nutrients, and the 

activation of plant immune responses but also actively participated to plant growth promoting activities 

like secretion of phytohormone, enhancing nutrient uptake and influences plant biochemical pathway. 

This review represents a scenario of the different types of endophytes, their mechanism of action as 

biocontrol agents and biofertilizers successful case studies, and their role in integrated pest and disease 

management systems with plant growth promotion and additionally, discusses the recent advanced 

Next Generation Technology, viz., next generation sequencing, multi-omics studies for endophytic 

microbial identification and research, challenges, limitations, regulation and future scopes for the 

commercialization and application of endophytes as a biocontrol agents and biofertilizers to support 

sustainable agriculture in crop improvement with ecological resilience. 

 
Keywords: Endophytic microorganisms, phytopathogens, sustainable agriculture, advanced NGS 

technology, bioactive metabolites 

 

Introduction 

Plant health is critically interconnected with microbial community that both above and below 

soil (Trivedi et al., 2020; Van Elsas et al., 2019) [194, 198]. Among the mega diversity of plant-

associated microorganisms form of endophytes (Ali et al., 2021; Afzal et al., 2019) [16, 7], 

these organisms that reside internally within plant tissues leaves, stem and root (Mishra et 

al., 2021) [175], and represent an underexplored frontier in microbial ecology and agricultural 

biotechnology (Dubey et al., 2020) [61]. Endophytes has grown exponentially in recent years 

(Rana et al., 2023) [11], not only for their plant growth-promoting activities (Srivastava et al., 

2024) [187], but also specially for their ability to work as natural biocontrol agents (Bhardwaj 

et al., 2023; Baron et al., 2022) [32, 25] for inhibit harmful virulent phytopathogens (Bhagya et 

al., 2019; Emitaro et al., 2024) [31, 67].  

Today’s agricultural sector is facing several types of biotic challenges (Anand et al., 2023; 

Chaudhary et al., 2022) [17, 45], including the rapid evolution like novel strain are developed of 

pest and phytopathogen (Anand et al., 2023; Anand et al., 2019; Adeleke et al., 2022; Kumar 

et al., 2021) [17, 18, 4, 202], control to conventional agrochemicals (Adetunji et al., 2022; 

Bamisile et al., 2021; Dubey et al., 2020) [5, 23, 61], results, loss of soil-crop biodiversity (El-

Saadony et al., 2022) [66], and exceeded vulnerability of crops due to monoculture strategies 

(Bharti et al., 2025; Negi et al., 2025) [33, 134]. Chemical control measures are widely adapted, 

while effective in the short term, often environmental contamination, health risks, and non-

target effects, thereby necessitating more sustainable alternatives (Sharma et al., 2025) [180]. 

Endophytic microorganisms especially endophytic bacteria and fungi (Akram et al., 2023) [13] 

have emerged as potent in curing plant health (Wijesekara and Xu, 2023) [208], enhancing 

plant growth, and suppressing diseases (Basit et al., 2021; Eid et al., 2021) [27, 64] through 

enhance plant defence and eco-friendly mechanisms (Hardoim et al., 2015) [81]. 
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Endophytes are group of different types of microbes that 

colonize and establish, internal plant tissues (Kobayashi and 

Palumbo, 2000; Mengistu, 2020) [102, 125] without causing 

any apparent disease (Carroll, 1986; Petrini, 1991) [40, 155]. 

They are exhibiting numerous properties and play a crucial 

role in promoting plant growth, inducing stress tolerance 

(Shaffique et al., 2022; Ullah et al., 2019) [178, 196], and 

offering protection against harmful pathogens (Rabiae et al., 

2025; Radouane et al., 2024) [163, 164], thereby contributing 

significantly and perform to enhance plant health and 

productivity (Tariq et al., 2025; Pandey et al., 2023) [191, 179]. 

Their internal colonization permits them to interact 

intimately with the plant’s metabolic and defence responses, 

enabling both localized and systemic benefits (Riseh et al., 

2025; Ryan et al., 2008) [167, 171], further enhances their 

appeal for inclusion in integrated pest and nutrient 

management practices (Sena et al., 2024) [177], especially 

under organic or resource-conserving agricultural models 

(Kandel, 2016; Santoyo et al., 2016) [93, 176]. 

From a biological control point of view, endophytes have 

antagonistic biotic effects on plant pathogens through 

several well-characterized mechanisms (Fite et al., 2023; 

Doty et al., 2022; Pandit et al., 2022) [68, 60, 145]. For example, 

the production of antimicrobial compounds e.g., antibiotics, 

lipopeptides, volatile organic compounds (Nimbulkar et al., 

2025; Prabhu et al., 2025; Narayanasamy et al., 2023; 

Panwar et al., 2021) [138, 158, 130, 147], induction of host defence 

responses through systemic resistance pathways, 

competition for ecological niches and nutrients (Gulyamova 

et al., 2025; Mamarasulov et al., 2025) [120], enzymatic 

degradation of phytopathogen cell walls (Thomas et al., 

2024; Gagné-Bourque, 2015) [192, 70], and siderophores 

production (Chagas et al., 2018) [42] that sequester essential 

micronutrients like iron (Compant et al., 2005; Pieterse et 

al., 2014) [51, 156].  

The earth’s surface diversity of endophytes is vast yet 

widely underexplored (Sivalingam et al., 2024; Dos Reis et 

al., 2022; Aghdam and Brown, 2021; Harrison et al., 2020) 

[185, 59, 8, 84], as traditional culture-dependent methods often 

don’t cover to their hidden complexity (Mametja et al., 

2025) [121]. Chaurasia et al. (2018) [46] suggested that 

Actinomycetes: an unexplored microorganism for plant 

growth promotion and biocontrol in vegetable crop.  

According to Kayode et al. (2025) [98] previous discoveries 

have denoted that nearly 300,000 species worldwide-

harbour one or more endophytic microbial communities. 

Endophytes live multiple domains of life, including bacteria, 

fungi, actinomycetes, and even archaea. Among bacterial 

endophytes, diversity is commonly dominated by members 

of the phylum Proteobacteria (alpha, beta, and gamma 

classes) (Anand et al., 2023) [17], with the most frequently 

found genera like Bacillus, Pseudomonas, Enterobacter, 

Streptomyces, Klebsiella, Azospirillum, and Rhizobium 

(Ahmed et al., 2024). These organisms may be Gram-

negative rods or Gram-positive spore-formers (Beskrovnaya 

et al., 2021) [30] and exhibit high metabolic mechanism (Soni 

and Keharia, 2021) [186] and can survive in the dynamic 

internal environments of plant tissues (Andryukov et al., 

2020; Van Elsas et al., 2019) [19, 198]. Fungal endophytes 

dominated by the genera such as Penicillium, Trichoderma, 

Neotyphodium Fusarium non-pathogenic strains, 

Cladosporium, and Aspergillusm (Grabka et al., 2022; 

Fontana et al., 2021; Al-Ani et al., 2019) [75, 69, 15], these 

genera have shown the ability to confer stress tolerance and 

enhance pathogen resistance in host plants (Deepa et al., 

2024; Akram et al., 2023; Arnold et al., 2001) [56, 13, 21]. 

Tariq et al. (2025) [191] strongly suggested that nowadays 

advances in Next-Generation Sequencing technologies have 

revolutionized the identify of these symbiotic endophytic 

microbes by overcoming the limitations and challenges of 

traditional culture-dependent techniques. NGS offers a 

powerful base for exploring the genomic, transcriptomic, 

and functional potential of endophytic microbes (Shishodia 

et al., 2025; Verma et al., 2024; Bielecka et al., 2022; Chen 

et al., 2022; Wani et al., 2022; Bosamia et al., 2020) [18, 203, 

34, 48, 207, 38] at unprecedented depth. It has become a powerful 

platform in modern life sciences, investigating innovations 

in consumer genomics, translational research, and 

diagnostics at molecular level (Kaur et al., 2024; Sagita et 

al., 2021; Kaul et al., 2016) [133, 173, 96]. Platforms such as 

Illumina NGS enable high-throughput sequencing (Prasanna 

et al., 2022) [161] that reveals genetic variations, taxonomic 

diversity, and metabolic pathways within microbial 

communities (Patel et al., 2025; Deepa et al., 2024) [149, 56]. 

These tools have analysed that each plant species harbours a 

unique core microbiome that can be altered by genotype 

(Maestro-Gaitán et al., 2025; Tabassum et al., 2024; Latz et 

al., 2021; Mina et al., 2020) [118, 190, 109, 126], developmental 

stage (Bintarti et al., 2022) [35], environmental conditions 

(Sahu and Mishra, 2021), and agricultural practices (Berg et 

al., 2014) [29].  

According to Deepa et al. (2024) [56] through metagenomic, 

meta-transcriptomic, and functional genomic approaches, 

NGS enables the discovery of novel genes, biosynthetic 

pathways, and secondary metabolites with potential 

biotechnological applications. Additionally, the integration 

of Next Generation Sequencing technology with microbial 

biotechnology opens new doors for crop improvement in 

sustainable agriculture by developing the biofertilizers, bio-

control, and stress-resilient crop varieties presented in 

Figure1. 

This review therefore focuses the endophytic microbial 

advancement through NGS technology: unlocking the power 

of the genome”, highlighting on scenario of endophytes, the 

interconnected with plants surrounds, advantages, their 

limitations and challenges, how to identified their potential 

genes or traits or endophytes through Next Generation 

Sequencing technologies-driven discoveries are shaping 

their application through case studies in agricultural 

microbial biotechnology and beyond. 
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Fig 1: Endophytic Microbial Analysis through Traditional Culture-Dependent Methods and NGS Technology (Adapted from Deepa et al. 

2024) 

 

Endophytic Microbes 

Endophytic microorganisms are having a taxonomically 

wide range and ecologically diverse group that colonize 

(Nair et al., 2014) [129] and establish the internal plant tissues 

without causing any disease symptoms or damages 

(Harrison and Griffin, 2020) [83]. These endophytes occupy a 

crucial ecological niche, symbiotic relationship (Kuźniar et 

al., 2025; Zou et al., 2025) [108, 218] that can wide range from 

mutualistic to commensal (Bard et al., 2024; El-Metwally et 

al., 2023) [24, 65] and sometimes opportunistic (Mishra et al., 

2021), based on the host physiology, biochemical and 

environmental conditions (Hajji-Hedfi et al., 2025; 

Hakansson et al., 2018) [78, 79]. Endophytes are not only 

widespread across terrestrial and aquatic plant (Lazar et al., 

2022) [110] but also are recognized as integral form of the 

plant holobiont systems (Pramanic et al., 2023; Durand et 

al., 2021; L'Hoir et al., 2021; Lyu et al., 2021) [160, 62, 111, 116] 

a functional unit forming the host and its relation with 

microbial communities (Grzyb et al., 2024; Anand et al., 

2023; Dittami et al., 2021; Khare et al., 2018) [76, 17, 57, 101]. 

According to Vasileva et al. (2019) [199] some common 

endophytic bacterial genera isolated from agronomic plants 

reported in literature and found that diversity of endophytes 

in leguminous plants are more as comparison to non-

leguminous plants. 

Verma et al. (2021) [202] revealed that potential application 

of endophytes is stress controller to manangement of abiotic 

stress from drought and salinity in crop plants, through 

different mechanism.  

 

Plant-Microbial relationships at phyllo-spheric and 

rhizospheric zone 
Zhao et al. (2024) [217] reported that endophytic microbes 

and rhizospheric microbes are efficient to promote growth 

of the plants directly as well as by indirectly through 

increasing macronutrient and mineral uptake, plant 

protection against pathogens respectively presented in 

Figure 2. Naturally synthesized bioactive compounds with 

antimicrobial activities can be exploited in various sectors, 

especially in the Agricultural Biotechnology sectors. 
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Fig 2: Mechanisms of Plant-Endophytic Microbial-Interaction (Adapted from Zhao et al. 2024) 

 
Timeline of Endophyte Research and identification  
Endophytes were first described by J. H. Friedrich Link, the 
German botanist, in 1809. They were about plant parasitic 
fungi. the French scientist Béchamp were later coined the 
term as "microzymas". There was a strongly belief that 

plants were healthy under sterile conditions and it was not 
until 1887 that Victor Galippe identified bacteria normally 
occurring inside plant tissues (Hardoim et al., 2015) [81], 
history of endophytic microorganism shown in Figure 3. 

 

 
 

Fig 3: A schematic representation, timeline of endophytic microbial research and identification in 1809 up to present year 
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Classification of Endophytic Microorganisms 

According to Das et al. (2025) [159] obligate endophytes rely 

redefined as entirely on the host plant for growth, 

development, establishments, and reproduction without host 

can’t survive. These are often associated in long-time, co-

evolved relationships with specific plant lineages. In case of 

facultative endophytes are colonizing plant tissues under 

favourable conditions and free-living in the soil or 

rhizosphere under an unfavourable condition. Most bacterial 

endophytic species belong to this category (Compant et al., 

2005; Compant and Vacher, 2019) [51, 52], presented in Table 

1. 

 
Table 1: Classification of Endophytic Microorganisms in different Categories with examples (Das et al., 2025) [159] 

 

Basis of Classification Category Examples 

On the Basis of Microbial Type 
Bacterial Endophytes Pseudomonas, Bacillus, Enterobacter, Klebsiella, Streptomyces 

Fungal Endophytes Epichloë, Trichoderma, Fusarium, Aspergillus, Penicillium 

On the Basis of Colonization Pattern 
Obligate Endophytes Epichloë coenophiala, Arbuscular mycorrhizal fungi 

Facultative Endophytes Pseudomonas fluorescens, Trichoderma harzianum 

Transmission Mode 
Vertical Transmission Epichloë spp. in grasses 

Horizontal Transmission Fusarium, Alternaria, Colletotrichum 

Symbiotic Relationship 

Mutualistic Endophytes Trichoderma spp., Azospirillum brasilense 

Commensal Endophytes Some Penicillium spp. 

Latent/Opportunistic Endophytes Fusarium oxysporum (non-pathogenic strains) 

On the Basis of Fungal Ecological 

Classes 

Class1 (Clavicipitaceous) Epichloë coenophiala (seed transmitted in tall fescue) 

Class 2 (non-clavicipitaceous) 
Trichoderma, Alternaria, Fusarium (broad host range, colonize 

roots/shoots) 

Class 3 (non-clavicipitaceous) Colletotrichum, Ustilago (above-ground limited colonization) 

Class 4 (non-clavicipitaceous) Phialocephala, Chloridium (root-restricted, melanized) 

 

Transmission Mode of Endophytic microorganism  
Endophytes can enter plants tissue or cell through natural 

openings like hydathodes or stomata and lenticels, as well as 

through wounds on the root surface or tips (Mattoo and 

Nonzom et al., 2020; Kumar et al., 2020) [124, 92]. Once 

inside, they colonize intercellular spaces, vascular tissues 

and sometimes even intracellular compartments, depending 

on host-microbe mutualistic relation (Khan et al., 2025; 

Stotz et al., 2022) [100, 195], presented in Figure 4. According 

to Ahlawat et al. (2022) [9] colonization patterns are affected 

by both microbial traits (e.g., motility, adhesion, quorum 

sensing) and host factors (e.g., immune responses, 

secondary metabolite production). 

 

 
 

Fig 4: Entry of Endophytes through different Mode (Adapted from Ahlawat et al. 2022) [9] 
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Diversity Drivers 
Anand et al. (2023) [17] reported the cluster data analysis was 

performed by “VOS viewer version 1.6.16,” 2020 

represented in Figure 5. The map highlights the most 

frequently used bibliographic terms to understand the most 

active research areas and results can be grouped into five 

clusters. The first cluster is represented by green balls 

exhibit 241 items, and devoted to stress factors and 

adaptation. Keywords are related to abiotic stress (e.g., 

salinity and drought) and biotic (pathogen). Cluster 2 is 

represented by blue balls exhibit 224 items, keywords 

highlight the reactivity of endophytes, the endophytic 

production of metabolites, and the antibacterial activity of 

the obtained bioactive compounds. The third cluster is 

highlighted by yellow balls (192 items), and mainly 

concerns colonization mechanisms, with several keywords 

devoted to culture, and bacterial and fungi growth. Cluster 4 

is represented by violet balls, 75 items, and devoted to 

remediation, with keywords related to contamination and 

detoxification. The keywords contaminants denote to heavy 

metals and organic pollutants. Finally, cluster 5 is exhibit 

168 items, represented by red balls, mainly devoted to 

genome and genetic expressions. 

 

 
 

Fig 5: Reports the cluster analysis provided from the co-occurrence network of keywords of the papers extracted from the SCOPUS platform 

(Adapted from Anand et al. 2023) [17] 

 

Endophytic community consisted by a range of biotic and 

abiotic factors (Kandel, 2016) [93]. 

 

Plant genotype and species: The host plant genome 

makeup affects its root exudates substance and 

physicochemical process, which in turn modulate according 

to microbial needs. 

 

Tissue specificity: Endophytic populations vary with its 

living plant parts like roots, stems, leaves, flowers, and 

seeds, each offering unique microhabitats. 

 

Developmental stage: The successional dynamics of plant 

growth affect microbial turnover and taxonomical 

functional. 

Environmental variables: Soil types, pH, EC, temperature, 

moisture level, and agricultural management practices e.g., 

chemical pesticide and fertilizer use, crop rotation and 

patterns significantly influence endophytic functions. 

 

Advantages of using Endophytic microorganism  

Endophytic microorganisms exhibit advantages through a 

complicated and multifaceted array of mechanisms, dealing 

with direct antagonism, boost of plant immunity, and 

competitive ecological interactions (Lu et al., 2021) [189]. 

These mechanisms are the result of millions of years of co-

evolution between plants and their associated microbiota 

and reflect both microbial lifestyle and ecological resilience. 

The studying of these association at a molecular, cellular 

and physiological level is important for making effective 

biological control strategies in modern agriculture, 
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presented in Figure 6 (Tariq et al., 2025) [191]. Chaudhary et 

al. (2022) [45], and Kumar et al. (2022) [45] suggested that 

endophytes are promising biofertilizers in crop improvement 

for agriculture production. Field-level applications of 

endophytic biocontrol agents have observed promising 

results under natural disease pressures. Aarthi et al. (2025) 

[1] conducted an experiment in both greenhouse and field 

condition, application of a consortium of Bacillus subtilis 

and Trichoderma viride significantly minimized the 

incidence of disease like damping-off, root rot, and leaf spot 

in vegetable crops. There results strongly suggested that 

consortium of Bacillus subtilis and Trichoderma viride 

acted synergistically, providing broad-spectrum control and 

promoting plant growth. 

 

 
 

Fig 6: Advantages of Endophytic Microorganism through different Strategies (Adapted by Tariq et al. (2025) 

 

Antibiosis and Secondary Metabolite Production: One of 

the most effective mechanisms of the plant for the 

production of bioactive secondary metabolites with 

antimicrobial compounds (Basit et al., 2021; Jain et al., 

2019; Zaynab et al., 2018) [27, 89, 215]. These include 

antibiotics, cyclic lipopeptides, phenazines, siderophores, 

terpenoids, and volatile organic compounds VOCs, 

(Heredia-Bátiz et al., 2025; Navarro et al., 2019) [85, 131] and 

these compounds directly inhibit the growth or reproduction 

of pathogenic fungi, bacteria, or nematodes (Jha et al., 

2022) [90] by disrupting cell wall integrity (Gogoi et al., 

2024) [73], inhibiting essential enzymes, or generating 

reactive oxygen species (Oyebamiji et al., 2024) [173]. For 

example, Bacillus subtilis produces lipopeptides degrading 

substances such as surfactin, fengycin, and iturin, which 

form pores in fungal membranes, leading to cytoplasmic 

shrinkage finally death of the cell (Ongena and Jacques, 

2008) [141]. Similarly, Pseudomonas fluorescens synthesizes 

phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol 

(DAPG), both of which are efficient antifungal agents 

(Raaijmakers et al., 2002; Njuguna, 2025) [162, 139]. 

Endophytic Streptomyces spp. produces a broad spectrum of 

antibiotics that exhibit antagonism activity toward various 

phytopathogenic species e.g., Fusarium, Ralstonia, and 

Pythium spp. 

Competition for Nutrients and Ecological Niches: 

Endophytic microorganisms exhibit most powerful strategy, 

suppress the pathogens through various way like niche 

exclusion (Wallis, 2021) [205], effectively living internal plant 

parts tissues (Omomowo and Babalola, 2019) [140] and 

competing with potential pathogens for space and limited 

nutrients (Liu et al., 2017) [113] such as iron, nitrogen, and 

carbon sources (Blumenstein et al., 2015) [37]. The ability of 

endophytes to colonize, stabilize the plant environment 

before pathogen (Bamisile et al., 2021) [23] and confers a 

competitive edge, minimizing the chances of pathogen 

establishment (Gómez-Lama et al., 2025; Khan et al., 2025) 

[74, 100]. This mechanism is important in root systems where 

nutrient fluxes are high and microbial interactions are 

intense (Dutilloy et al., 2022) [63]. 

According to Neilands, (1995) [136] iron is a critical 

micronutrient, and many endophytes produces siderophores 

high-affinity iron-chelating compounds to sequester iron 

from the rhizosphere to apoplast. By low iron availability, 

they create a hostile environment for iron-dependent 

pathogens. 

 

Induced Systemic Resistance (ISR): ISR defines to the 

activation of plant defence responses triggered by beneficial 

microorganisms, including endophytes (Oukala et al., 2021; 

Tonelli et al., 2020; Rashid and Chung, 2017) [142, 193, 166] 

Unlike systemic acquired resistance (SAR), which is 

mediated by salicylic acid (SA)-dependent pathway (Sun et 

al., 2021; Islam et al., 2019) [189, 88] and triggered by 
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pathogenic infection (Kamle et al., 2020; Roychowdhury et 

al., 2024) [92, 170], ISR is often mediated by jasmonic acid 

(JA) and ethylene (ET) pathways (Yanti, 2019; Yang et al., 

2015) [212, 211] and does not necessary the presence of a 

pathogen (Cho et al., 2008) [49]. 

Endophytes such as Pseudomonas fluorescens and 

Trichoderma asperellum have been observed to prime host 

plants for a quick and stronger defence response against 

pathogen attack (Aarthi et al., 2025) [1]. This priming 

involves enhanced expression of pathogenesis-related (PR) 

genes or protein, production of reactive oxidative enzymes 

(e.g., peroxidases, polyphenol oxidases), and accumulation 

of secondary defence metabolites (Adeleke et al., 2022) [3]. 

 

Production of Lytic Enzymes: Many endophytic 

microorganism’s production of extracellular hydrolytic 

enzymes for capable of degrading pathogen cell walls 

(Sahoo et al., 2025; Riseh et al., 2024; Panicker and Sayyed, 

2022) [174, 167, 146] and include chitinases, β-1,3-glucanases, 

proteases, cellulases, and lipases (Chandoliya et al., 2023; 

Admassie et al., 2022; Lopes et al., 2021) [43, 6, 114]. This 

enzymatic degradation and ruptured the structural integrity 

of fungal and bacterial pathogens, leading to lysis finally 

death (Kandi et al., 2022) [94]. For example, Trichoderma 

spp. has these enzymes in a coordinated manner to parasitize 

and degrade fungal hyphae a process called as 

mycoparasitism (Harman et al., 2004) [82]. Similarly, 

Streptomyces and Bacillus spp. secretes proteases and 

chitinases enzymes that lysis pathogen cell walls in situ. 

 

Productions of Volatile Organic Compounds (VOCs): 

Endophytes produce a wide range of low molecular weight 

compounds Volatile Organic Compounds (VOCs) with 

biocontrol activities (Ling et al., 2024) [112] such as 

antibacterial, nematocidal and antifungal, activities (Karslı 

and Şahin, 2021; Roy et al., 2019) [95, 169], viz., 2,3-

butanediol, hydrogen cyanide (HCN) and acetoin, have been 

identified and reported to suppress pathogen growth, 

development and spore germination, and other activities 

(Naz et al., 2022) [132]. These compounds also have provided 

beneficial effects on plant physiology, enhancing plant 

health growth, biotic and abiotic stress tolerance. 

 

Activation of Phytohormone Levels: Most of these 

beneficial endophytes are produce phytohormones (Younas 

et al., 2025; Cosoveanu et al., 2021; Xu et al., 2018) [213, 53, 

210] such as indole-3-acetic acid (IAA), ethylene, 

gibberellins, cytokinin, and abscisic acid (ABA). These 

compounds not only promote plant growth, development 

and other activities but also mediate stress responses and 

fortify plant defences (Sharma et al., 2023) [184]. 

Additionally, hormone mimics or hormone-activating 

enzymes e.g., ACC deaminase help avoid abiotic stresses 

and stop pathogen-induced senescence, and enhancing plant 

vigour (Sadaf et al., 2016) [172]. 

 

Biofilm Formation and Colonization Resistance: Biofilm 

formation defence characteristics by endophytic bacteria 

creates a physical and biochemical barrier that suppresses 

pathogen colonization (Ajijah et al., 2023; Pinski et al., 

2019) [11, 157]. Biofilms are complex extracellular polymeric 

substances (EPS) produced by endophytic microbial 

communities (Velmourougane et al., 2017) [200] and promote 

adherence to plant tissues, protect against environmental 

stresses, and provide nutrient exchange (Gogoi et al., 2021) 

[72]. Endophytic strains of Bacillus velezensis and 

Pseudomonas putida have resulted strong biofilm-forming 

capabilities, contributing to persistent colonization and 

pathogen exclusion characters (Patil et al., 2022) [150]. 

 

Quorum Quenching and Signal Interference: Some 

endophytes have quorum quenching activity, disrupting the 

communication systems of phytopathogens (Kusari et al., 

2015) [107] that rely on quorum sensing (QS) to coordinate 

virulence (Venkatesh et al., 2019) [201], biofilm formation, 

and toxin secretion (Joo et al., 2021; Alagarasan et al., 

2017) [91, 14]. Endophytes serve as N-acyl homoserine lactone 

(AHL) lactonases (Paul et al., 2023) [152] and acylases 

enzymes degrade signalling molecules like N-acyl 

homoserine lactones (AHLs) (Pellissier et al., 2021; Shastry 

and Rai, 2017) [153, 181], hindering the pathogens incapable of 

searching coordinated attacks (Anandan et al., 2019) [18]. 

These mechanisms enable endophytic microorganisms to 

function as more effective and multifaceted biocontrol 

agents (Abid Mehmood et al., 2025) [2]. Their internal 

stabilization, capacity for symbiotic relationship, and 

breadth of antagonism activity make them evenly equipped 

for deployment in sustainable crop protection and 

management strategies (Negi et al., 2024) [133].  

A broad-level understanding of these interactions provided 

by multi-omics technologies, synthetic biology, and 

microbial ecology will be key to utilizing endophyte-based 

formulations for real-world agricultural. 

 

Microbial Biotechnology Advancement through NGS 
Recent era has supported advancements in Next-Generation 

Sequencing (NGS) technologies, revolutionizing of 

endophytic microbiomes and our understanding their 

functions in plant growth promotion and biocontrol. 

Culture-dependent methods, still valuable but have some 

limitations in failing to cover the full spectrum of microbial 

diversity within plant tissues. NGS technologies enables 

high-throughput, culture-independent profiling to identify of 

endophyte communities at an unprecedented resolution, 

allowing researchers to characterize and analyse microbial 

composition, function, and interaction, compatibility with 

high accuracy (Tariq et al., 2025) [191]. 

 

Meta transcriptomics and Meta-Proteomics: These 

advanced omics technologies offer snapshots of endophytic 

gene expression (RNA-seq) and protein study under in vivo 

plant colonization surrounding. By detecting real-time 

interactions between endophytes and host plants, scientists 

and researchers can identify genes involved in immune 

priming, oxidative stress response mechanism, and signal 

response pathways. Meta transcriptomic studies offer in 

Pseudomonas and Streptomyces endophytic genera have 

linked expression of defence-mechanism proteins with 

phytopathogen suppression (Mabaso et al., 2025) [117] 

 

Metagenomics and Functional Annotation: Whole-

genome shotgun metagenomics techniques surpass amplicon 

sequencing by providing dept study into the functional 

potentialities or capabilities of endophytes (Huang et al., 

2023) [86]. Researchers to reconstruct metabolic pathways, 

detect biosynthetic gene clusters their expression 

responsible for antibiotics, siderophores, and 

phytohormones, and study horizontal gene transfer that 
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transfer to biocontrol traits. For instance, metagenomic 

analysis has performed that certain Bacillus endophytes 

possess non-ribosomal peptide synthetase (NRPS) and 

polyketide synthase (PKS) gene clusters responsible for 

lipopeptide production (Patil et al., 2025) [151]. 

 

Genome-Wide Association Studies (GWAS): Integrating 

NGS with GWAS enables researchers analyse to link 

between plant genetic traits and endophytic microbiome 

structure and function (Kumar et al., 2025) [106]. These 

interactions provide information, how to boast plant 

immunity, metabolic signalling, and receptor expression 

affect microbial colonization, establishment, and biocontrol 

potential (Mani and Kushwaha, 2023) [122]. 

 

High-Throughput 16S rRNA and Internal Transcribed 

Spacer (ITS) Amplicon Sequencing: PCR-based 

sequencing of conserved genomic regions, such as 16S 

rRNA for endophytic bacteria (Zhang et al., 2022) [216] and 

Internal Transcribed Spacer for fungi, facilitates taxonomic 

analysis into complex endophytic communities (Singh et al., 

2023; Błaszczyk et al., 2021) [184, 36]. Through this 

technology has covered numerous unexplorable and 

unidentified endophytic microbes in cereals, leguminous 

and non-leguminous crop plants, such as wheat, maize, rice, 

and soybean. For their genome sequencing studies using 

Illumina Mi Seq and Hi Seq platforms have demonstrated 

(Dong et al., 2023) [58] that each plant species hosts a unique 

reservoir of microbiome, affected by genotype, development 

stage, and surrounding (Bulgarelli et al., 2012) [39]. 

 

Comparative Genomics and Pan-Genomics: These 

technologies permit for the comparison of various 

endophytic microbial strains from the same or different 

species or genera knowing conserved and unique genomic 

sequences (Wang et al., 2025; Mahmoud et al., 2024; Peng 

et al., 2024; Chen et al., 2007) [214, 119, 156, 47]. Comparative 

genomic studies provide difference between pathogenic and 

non-pathogenic endophytic microbial genera, like Fusarium 

(Neik et al., 2020) [135] or Xanthomonas strains (Passarelli-

Araujo et al., 2020) [148]. 

 

Single-Cell Genomics: This emerging technique enables 

the genomic characterization of individual unculturable and 

unidentified endophytes isolated from internal plant part 

tissues (Pradhan et al., 2025; Shishodia et al., 2025; 

Utturkar et al., 2016) [159, 182, 197]. It holds promise for 

resolving intragenic variability, strain-specific traits, and 

efficient endophyte-plant specificity. It has been mainly 

useful in studying low-diversity microbial taxonomy that 

could be allows for host defence (Cole et al., 2024) [50]. 

 

NGS-Enabled Bioprospecting: NGS technology offers to 

researchers can be identify microbial genomes for novel 

antimicrobial peptides, biosynthetic gene clusters, 

differential gene expression, and enzymes with potential 

agricultural applications. These studies are vital for 

developing next generation endophytic bioinoculants with 

multi-functional efficacy (Xu et al., 2022) [209]. 

Moreover, the integration of transcriptomics, proteomics, 

and metabolomics are leveraged to study and offers a 

framework into real-time microbial metabolism and cross-

kingdom signaling, and apply endophytes for improved crop 

yield and stress resilience. 

Manna et al. (2025) [123] Strongly suggested that omics-

based strategies to enhance agricultural productivity through 

endophyte research. A schematic representation of how 

genomics, transcriptomics, proteomics, and metabolomics 

are leveraged to study and apply endophytes for improved 

crop yield and stress resilience presented in Figure 7. 

 

 
 

Fig 7: Microbial Biotechnology Advancement through NGS   Adapted from Tariq et al. 2025) 
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Several types of case studies have been reported and 

explored how Next Generation Sequencing has accelerated 

the identification, research and application of endophytes in 

crop achievement, health management, and microbial 

biotechnology.  

Patel et al. (2025) [149] reported an endophyte of Brucella sp. 

PM1, from pomegranate, and analysis through whole-

genome NGS, technology revealing ~3000 plant growth-

promoting trait genes mapped to both direct mechanisms -

hormone secretion, nutrient uptake and indirect mechanisms 

- stress tolerance, colonization, and biocontrol. Their 

evidence showing capability for secondary metabolite 

production (ochrobactin), heavy-metal detoxification, and 

phytohormone biosynthesis pathways beyond IAA. There 

results concluded that Brucella genus is a good PGPR 

candidates and identifying multifaceted beneficial traits 

through whole genome sequencing (WGS).  

Yu et al. (2025) [214] identified Klebsiella pneumoniae strain 

YMK25, from maize, and demonstrated multiple in-vitro 

Plant Growth Promoting traits viz., high IAA, N-fixation, 

inorganic/organic P solubilization, and siderophore 

production, sequenced and annotated through whole genome 

sequencing 5.12 Mb, 4,746 CDS, predicted PGP traits or 

related genes- nif/ure/gln, trp/ipdC, pho/phn, ent/fep, etc., 

and showed that YMK25 enhances maize seedling growth 

and soil nutrients in pot trials. Their results strongly 

suggested that YMK25 is a promising biofertilizer 

candidate. 

Dong et al. (2023) [58] identified root endophytic microbial 

communities change across the growth stages of ratooning 

rice (cv. Jiafuzhan). NGS-based sequencing (16S + ITS) 

revealed clear shifts in root endophytic diversity across rice 

life stages. Their finding revealed that bacterial diversity 

highest at tillering stage, decreased at heading and ratooning 

and fungal diversity peaked at flowering and filling stages. 

Dominant bacterial endophytes Phyla: Proteobacteria, 

Actinobacteria, Firmicutes. Genera: Pseudomonas, 

Burkholderia, Bacillus and Dominant Fungal Endophytes 

Phyla: Ascomycota, Basidiomycota. Genera: Fusarium, 

Trichoderma, Aspergillus. Identify dominant endophytes 

(bacteria: genes for nitrogen fixation, organic matter 

decomposition, stress adaptation and fungi: functional 

guilds for saprotrophs, symbiosis, and plant defence) linked 

with plant growth, nutrient cycling, and stress tolerance. 

Their results demonstrated that NGS technology advances 

biotechnology by decoding endophytic diversity and 

functions, offering potential for biofertilizer and biocontrol 

applications in ratooning rice.  

used to Next Generation Sequencing technology (Illumina 

high-throughput sequencing) for identification of the 

diversity of endophytic fungi in Camellia reticulata 

pedicels. In these studied revealed that C. reticulata pedicels 

host rich and diverse endophytic fungal communities, 

dominated by Ascomycota. All the isolates have broad 

antagonism activities against to nectar yeasts. Alternaria 

alternata D23 results showed that highest antimicrobial 

potential and producing multiple antibiotics. NGS 

technology strongly revealed endophytic fungal diversity 

and reported 1,034 OTUs (4 phyla, 24 classes, 77 orders, 

161 families, 267 genera), while 4,036 metabolites 

(including amino acids, fatty acids, vitamins, nucleotides) 

uncovered novel bioactive compounds. Findings suggest 

that endophytic fungi contribute to nectar stability, plant 

defence, and reproductive fitness in cross-pollinated plants. 

Endophytes can synthesize a larger number of secondary 

metabolites, including antibiotics, and plant growth 

promotion and disease suppression compound like 

siderophores, phytohormones, and VOCs etc. The 

redundancy and multifunctionality of these metabolites 

underscore the ecological importance of endophytes as 

keystone members of the plant microbiome. The endophytic 

lifestyle is spending within plant thought to be an 

evolutionary prospectus for microbial longevity, enabling 

colonization of a nutrient-rich and relatively protected 

environment. In return, plants benefit from enhanced 

nutrient acquisition, disease resistance, and stress tolerance. 

Some endophytes even exhibit vertical flow through seeds, 

indicating long-term host association and better co-evolution 

(Hardoim et al., 2015) [81]. 

The advancement of NGS technologies has overview 

expanded our capacity to find out the complexity of 

endophytic microbiomes and their ecological and functional 

roles in plant disease suppression. Future integration of 

multi-omics technologies data with AI-based analytics and 

systems. Researchers will further investigate, to 

optimization, and deployment of endophytic biocontrol 

agents in sustainable agriculture. 

Overall, at functional characterization and taxonomic level 

diversity of endophytic microorganisms affects their 

ecology and evolutionary relationship. Identifying the 

complex interaction between host plant and endophytic 

microorganism at cellular, molecular, and ecological levels 

is important for their efficient characterization in biocontrol 

in sustainable agriculture.  

 

Limitations and Challenges of Next Generation 

Sequencing Technology 

Despite its power, Next Generation Sequencing technology 

faces numerous challenges and limitations like cost 

effective, incomplete reference databases, expertise for 

advanced bioinformatics studies, lack of standardized 

protocols causes variability across studies and difficulty in 

distinguishing true endophytic microbes from contaminants. 

Need of high-level functional predictions for experimental 

validation presented in Figure 8.  
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Fig 8: Limitations and Challenges of NGS Technology 

 

Conclusion 

Endophytic microorganisms represent a powerful 

antagonistic activity against disease or phytopathogens 

through defense mechanism pathway and their modes of 

action, ability to colonize internal plant tissues, and potential 

to enhance plant growth make them ideal candidates for 

sustainable agriculture. Future discovery and development 

should focus on overcoming the current drawback and 

exploring their full potential for commercial applications in 

agricultural sector. Endophytic microorganisms hold great 

potential in agriculture. In advancement of Next-generation 

sequencing (NGS) technologies has revealing their hidden 

diversity, functional traits genes, and bio-physio-chemical 

metabolic pathways beyond conventional methods. These 

technologies accelerate the discovery of efficient 

endophytes as biofertilizers, novel metabolites and 

biocontrol agents, in conclusion Next-generation sequencing 

(NGS) technologies making endophytes valuable potential 

tools for sustainable biotechnology. Integrating Next-

generation sequencing (NGS) technologies with multi-omics 

and synthetic biology will further unlock their applications 

in sustainable agriculture for crop improvement, 

environmental sustainability. 

 

Commercial Applications and Future Prospects 
The commercialization of endophytic biocontrol agents is 

maintaining, with several products already available or 

under process. Advances in molecular biology, genomics, 

and bioinformatics and nanotechnology are facilitating the 

identification and characterization of promising potent 

endophytes. The future holds potential for engineering 

endophytes with enhanced biocontrol potent traits catch 

several diseases. Formulation of microbial consortia to 

facilitate broad level disease resistance, integration into 

integrated pest management programs. Further using to 

CRISPR-Cas based gene editing technology to investigate 

and manipulate plant-microbial interactions. 
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