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Abstract 

The present study assessed phenotypic variability among 250 M4 generation kodo millet (Paspalum 

scrobiculatum L.) mutants developed through gamma irradiation, along with three checks, using 

multivariate approaches. The experiment was undertaken at Shaheed Gundadhoor College of 

Agriculture and Research Station Jagdalpur during Rabi-2024 utilizing augmented block design as 

layout. Principal Component Analysis (PCA) revealed four principal components explaining 71.5% of 

total variability, with grain yield per plant, number of grains per raceme, biological yield, and flowering 

traits emerging as major contributors. The first principal component (PC1) explained the largest share 

of variation (26.9%), mainly contributed by grain yield per plant (0.54), number of grains per raceme 

(0.492), and biological yield (0.46). Genetic divergence analysis grouped the mutants into ten clusters, 

with the largest being Cluster VI including 42 lines. The highest intra-cluster distance was observed in 

Cluster Ⅲ (2.886), followed by Cluster I (2.671), reflecting the existence of considerable genetic 

divergence within these groups, while maximum inter-cluster distance was observed between Cluster X 

and Cluster I, indicating the presence of highly divergent genotypes suitable for future hybridization. 

Regression analysis highlighted grains per raceme, biological yield, and harvest index as key predictors 

of grain yield per raceme. The model showed a high coefficient of determination, with grains per 

raceme (75.47%) and biological yield (71.09%) explaining maximum variability. These findings 

demonstrate the utility of multivariate approaches in identifying superior mutant lines for breeding 

programs. 

 
Keywords: Multivariate analysis, principal components, cluster analysis, regression analysis, genetic 

divergence 

 

Introduction 

Millets, often referred to as “minor cereals,” rank sixth among the world’s most important 

cereal crops (Das et al., 2019; Sarita & Singh, 2016) [3, 18]. They are recognized as “crops of 

the future” because of their ability to tolerate drought, withstand extreme climatic conditions, 

and resist many pests and diseases. These small-seeded annual grasses belonging to family 

Poaceae are cultivated globally for food, fodder, feed and oil, with more than 20 known 

species. (Das et al. 2019) [3]. They are adaptable to both kharif and rabi seasons, have long 

shelf life, and are nutritionally superior to most staple cereals, thus being promoted as “Nutri-

Cereals”. Kodo millet (Paspalum scrobiculatum L.) an indigenous, drought-tolerant, small-

grain cereal, is one of the oldest domesticated crops of India, with evidence of its cultivation 

dating back nearly 3000 years (Arendt & Dal, 2011) [1]. It is a self-pollinated, tetraploid 

species (2n = 4x = 40) belonging to the subfamily Panicoideae. Locally, it is known by 

names such as varagu, kodon, haraka, and arakalu. Besides India, its cultivation extends to 

countries like China, Russia, Africa, and Japan. In India, it is predominantly grown in 

Madhya Pradesh, Chhattisgarh, Tamil Nadu, Karnataka, and Gujarat.  

India is the largest producer of millets, contributing 38.4% of global production. Among 

minor millets, Madhya Pradesh and Uttarakhand together account for nearly half the national 

output. In Chhattisgarh, during 2023-24, small millets covered 48,000 hectares with a 

production of 19,000 tonnes and productivity of 390 kg/ha (Directorate of Economics & 

Statistics, 2022-23). 
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Kodo millet has a relatively long growth duration, requiring 

4-6 months to mature. Nutritionally, kodo millet is gaining 

popularity as a health-promoting cereal and a potential 

substitute for rice and wheat. Being highly self-pollinated 

due to cleistogamous flowers (Hariprasanna, 2017) [6], 

hybridization in kodo millet is challenging. Mutation 

breeding, therefore, offers an effective alternative to expand 

genetic variability and improve specific traits. Both physical 

mutagens (gamma irradiation) and chemical mutagens (e.g., 

EMS) are employed to induce variability. While M1 helps 

evaluate mutagenic effectiveness, subsequent generations 

(M2, M3, and M4) are crucial for identifying stable, heritable 

mutations. By the M4 generation, true-breeding mutant lines 

are generally fixed, making them valuable for crop 

improvement programs. 

 

Materials and Methods  

The present study was carried out during the Rabi season 

2024 at Shaheed Gundadhoor College of Agriculture and 

Research Station, Jagdalpur. The experimental material 

comprised 250 mutant lines of kodo millet al.ong with 3 

check varieties. The experiment followed an Augmented 

Block Design as layout, and the crop was sown on 15th of 

October 2024, all recommended agronomic practices were 

employed to ensure uniform establishment and healthy 

growth. In the experiment, data were collected by randomly 

selecting plants from the field at the optimum stage of 

growth and development. A total of 12 observations were 

recorded, focusing on quantitative traits such as days to 50% 

flowering (DAS), days to maturity (DAS), plant height 

(cm), flag leaf length (cm), flag leaf width (cm), raceme 

length (cm), test weight (g), number of grains per raceme, 

grain weight per raceme (g), number of productive tillers, 

biological yield, and harvest index (%). Principal 

Component Analysis (PCA) is a widely used multivariate 

statistical technique that helps in simplifying complex 

datasets. It helps in identifying a smaller number of 

components that can explain most of the total variation 

present in a dataset. Components with eigenvalues greater 

than one are usually considered significant. The 

interpretation of PCA is based on eigenvalues, proportion of 

variance explained, factor loadings (eigenvectors), and their 

graphical display through biplots. The formation of clusters 

and the estimation of inter-and intra-cluster divergence form 

the basis for designing hybridization programs. Mahalanobis 

D² statistics, introduced by Mahalanobis in 1936, is a 

powerful multivariate method that evaluates multiple traits 

and their interrelationships at the same time to calculate 

genetic distances among genotypes. Grouping of genotypes 

into different clusters was done by using Tocher’s method 

as described by Rao (1952) [11].  

Regression analysis is a key statistical method used to 

examine and predict the relationship between a dependent 

variable and one or more independent (predictor) variables. 

The effectiveness and significance of the model are assessed 

using statistical measures such as the coefficient of 

determination (R²), F-statistic, and p-values. A higher R² 

suggests that the model more effectively explains yield 

variability. The p value (p<0.05) indicates statistically 

significant relation with dependent variable. 

 

Results and Discussion 

Principal Component Analysis (PCA) is a powerful 

statistical tool in modern data analysis because this is a well-

known multivariate statistical technique. It reduces the 

dimensionality of large data set by transforming the original 

correlated variables, known as principal components while 

retaining most of the variation present in original data. The 

observations for twelve quantitative characters were 

recorded and the multivariate technique, principal 

component analysis was estimated. The current study 

identified 4 Principal Components (PCs) with Eigen value 

greater than 1.00 which accounted for 71.5% of the total 

variation. The Eigen values, percent variance, percent 

cumulative variance and factor loading of different 

characters studied are presented in Table 1 and Table 2. PC1 

has the highest eigen value (3.233) followed by PC2 (2.639) 

PC3 and PC4 had the eigen values of 1.519 and 1.193 

respectively. 

From the Principal Component Analysis, PC1 accounted for 

the highest proportion of variance (26.9%), mainly 

contributed by traits such as grain yield per plant (0.54), 

number of grains per raceme (0.492), and biological yield 

(0.46). PC2 explained 22% of the variance, with a 

cumulative variance of 48.9%, primarily influenced by days 

to 50% flowering (0.557) and days to maturity (0.551). The 

third principal component, PC3 contributed 12.7% of the 

variance, raising the cumulative variance to 61.6%, and was 

largely associated with harvest index (0.496) and test weight 

(0.276). PC4 explained 9.9% of the variance, with a 

cumulative variance of 71.5%, and was mainly related to 

flag leaf width (0.590) and test weight (0.471). 

In the previous findings of Patil et al. (2017) [10] genetic 

diversity in finger millet was examined using principal 

component analysis and found three principal components 

showing 98.31 percent of total variation. Suman et al. 

(2019) [15] studied 55 finger millet genotypes using 

multivariate analysis and revealed that the first four 

principal components with eigen value of greater than 1.33 

contributed about 66.54% of total variability. Shashibhushan 

et al. (2022) [17] studied 40 pearl millets genotypes for eight 

quantitative characters, found that the first three principal 

components with eigen value greater than 1 contributed 

82.3% percent of total variability.  

 

Factor loadings for twelve quantitative characters 

In PC1, all traits showed positive loadings, with the highest 

contributions from grain yield per raceme (0.541), number 

of grains per raceme (0.492), biological yield (0.467), 

productive tillers (0.341), harvest index (0.246), and flag 

leaf length (0.108). This indicates PC1 mainly captures 

yield-related variation. Similar trends were reported by 

Gupta (2022) [4] in pearl millet. 

PC2 was dominated by positive loadings for days to 50% 

flowering (0.557), days to maturity (0.551), and plant height 

(0.468), while negative loadings were recorded for 

biological yield (-0.118), number of grains per raceme (-

0.065), and grain yield per raceme (-0.034). In the previous 

findings of Ladumor et al. (2021) [7] similar results were 

noticed where positive loadings for days to 50% flowering, 

days to maturity, and plant height have shown positive 

loadings. Thus, PC2 primarily represents growth duration 

and plant stature, with limited contribution from yield traits. 

The third principal component, PC3 showed positive 

associations with traits such as days to flowering (0.178), 

days to maturity (0.112), flag leaf width (0.014), harvest 

index (0.496), test weight (0.276), and grain yield per 

raceme (0.097). In contrast, negative associations were 
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observed for plant height (-0.012), flag leaf length (-0.485), 

raceme length (-0.586), productive tillers (-0.098), number 

of grains per raceme (-0.021), and biological yield (-0.188). 

For the fourth principal component (PC4), positive loadings 

were noted for flag leaf length (0.303), flag leaf width 

(0.590), raceme length (0.207), harvest index (0.265), test 

weight (0.471), and grain yield per raceme (0.025), while 

negative loadings were recorded for days to 50% flowering 

(-0.194), days to maturity (-0.212), plant height (-0.140), 

productive tillers (-0.260), number of grains per raceme (-

0.202), and biological yield (-0.121). Overall, the results 

indicate that traits with higher loadings in PC3 and PC4 

particularly harvest index, test weight, and flag leaf 

attributes play a major role in genetic variability and can be 

prioritized in breeding programs for trait enhancement. 

 
Table 1: Eigen values, variance proportion and cumulative 

proportion for PC’s 
 

Particulars PC1 PC2 PC3 PC4 PC5 

Eigenvalues 3.233 2.639 1.519 1.193 0.928 

Proportion 0.269 0.220 0.127 0.099 0.077 

Cumulative Proportion 0.269 0.489 0.616 0.715 0.793 

 
Table 2: Factor loadings for 4 principal components 

 

Particulars PC1 PC2 PC3 PC4 

Days to 50% flowering (DAS) 0.034 0.557 0.178 -0.194 

Days to maturity (DAS) 0.023 0.551 0.112 -0.212 

Plant height (cm) 0.002 0.468 -0.012 -0.140 

Flag leaf length (cm) 0.108 0.273 -0.485 0.303 

Flag leaf width (cm) 0.039 0.106 0.014 0.590 

Length of raceme (cm) 0.101 0.207 -0.586 0.207 

Productive tillers 0.341 -0.063 -0.098 -0.260 

Number of grains per raceme 0.492 -0.065 -0.021 -0.202 

Biological yield per plant(g) 0.467 -0.118 -0.188 -0.121 

Harvest index (%) 0.246 0.104 0.496 0.265 

Test weight (g) 0.214 0.067 0.276 0.471 

Grain yield per raceme (g) 0.541 -0.034 0.097 0.025 

 

 
 

Fig 1: Biplot representation of principal component analysis 

 

Cluster Analysis  

Grouping of genotypes into clusters  
Cluster formation and the estimation of inter-and intra-

cluster divergence provide a basis for designing effective 

hybridization programs. In the present study, 250 mutant 

lines were grouped into ten clusters, namely Cluster Ⅰ, 

Cluster Ⅱ, Cluster Ⅲ, Cluster Ⅳ, Cluster Ⅴ, Cluster VI, 

Cluster VⅡ, Cluster VⅢ, Cluster IX, and Cluster X. Among 

these, Cluster VI contained the highest number of mutants 

(42 lines), followed by Cluster Ⅲ with 36 lines, Cluster Ⅱ 

with 29 lines, Cluster VⅡ with 25 lines, Cluster Ⅴ with 24 

lines, and Cluster Ⅰ with 18 lines. Clusters IX and X 

included the least, with 15 lines each, presented in Table 3. 

Such clustering reflects the relative genetic proximity 

among lines. This information is crucial for crop 

improvement, as it facilitates the selection of genetically 
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diverse parents and supports transgressive breeding. It is 

generally recommended to select parents from distinct 

clusters to maximize heterosis. Previous studies also 

highlight variability in cluster, Nirubana et al. (2017) 

reported 11 clusters in 103 kodo millet genotypes, while 

Sahu (2023) [16] used Mahalanobis’ D² statistics to classify 

102 kodo millet mutants into five clusters. Similarly, 

Nireekshitha et al. (2024) [8] identified eight clusters among 

38 kodo millet genotypes, whereas Subramanya & 

Ravikumar (2020) [13] grouped 33 finger millet genotypes 

into 10 clusters using D² analysis. Reddy & Vengadessan 

(2022) [12] reported 10 clusters from 42 genotypes, and 

Venkataratnam et al. (2025) assessed genetic divergence in 

50 little millet genotypes using Mahalanobis’ D² and also 

identified 10 clusters. 

 

Intra and Inter cluster distances  

Clustering and the assessment of intra-and inter-cluster 

distances form the basis for identifying genetically diverse 

parents. In the present investigation, the highest intra-cluster 

distance was observed in Cluster III (2.886), followed by 

Cluster I (2.671), Cluster IV (2.517), Cluster IX (2.442), 

Cluster VII (2.388), Cluster VIII (2.342), Cluster X (3.12), 

Cluster VI (2.302), and Cluster V (2.170), while the lowest 

was recorded in Cluster II (2.167). A higher intra-cluster 

distance reflects greater genetic variability within that 

cluster, whereas lower values denote closer genetic affinity 

among its members (Suryanarayana et al., 2014) [14]. 

The maximum inter-cluster divergence was found between 

Cluster X and Cluster I (5.984) given in Table 4, followed 

by Cluster IV and I (5.801) and Cluster III and I (5.559), 

suggesting the presence of wide genetic divergence and their 

potential use in developing superior segregants. Conversely, 

the lowest inter-cluster distance was observed between 

Cluster VI and VII (2.214), followed by Cluster X and V 

(2.478), indicating a relatively narrow genetic base. 

Comparable results have been reported earlier by Gautham 

(2020) recorded maximum inter-cluster distance between 

Cluster II and I (4.292) among three clusters. Similarly, 

Niharika (2022) [9] reported maximum divergence between 

Cluster II and I (4.65), followed by Cluster III and II (3.20) 

and Cluster III and I (2.85). Sahu (2023) [16] also noted that 

Cluster IV and II showed the highest inter-cluster distance 

(3.513), followed by Clusters IV and III (3.412). These 

findings highlight that genotypes from clusters with higher 

inter-cluster distances are more promising for heterotic 

expression and broadening the genetic base through 

recombination. 

 

Cluster mean values for all quantitative traits 

Cluster mean analysis revealed substantial variability across 

the twelve quantitative traits, providing a useful basis for 

identifying clusters with superior performance.As depicted 

in the Table 5, Cluster III which included 36 mutants, 

recorded the highest means for number of grains per raceme 

(316.97), productive tillers (9.23), grain yield per raceme 

(1.85), plant height (90.46), and test weight (6.39). Cluster 

X exhibited superiority for days to maturity (114.40), days 

to 50% flowering (76.20), and flag leaf length (45.50). 

Cluster V showed the highest mean value for raceme length 

(9.40), while Cluster II excelled in harvest index (36.30), 

Cluster VII in flag leaf width (0.96), and Cluster VIII in 

biological yield (4.89). Cluster IV also displayed higher 

mean values for flag leaf length, grains per panicle, test 

weight, and grain yield per panicle. On the other hand, 

Clusters I, VI, and IX did not exhibit superiority for any 

trait. These findings indicate that certain clusters serve as 

valuable sources for specific trait improvement, thereby 

offering scope for targeted selection in breeding programs. 

Similar observations were made by Charitha (2023) [2], who 

reported three clusters among 64 finger millet genotypes, 

with Cluster III containing the maximum genotypes and 

showing the highest mean values for traits such as days to 

flowering (69.91), days to maturity (101.3), and plant height 

(102.59). 

 
Table 3: Clusters representing number of genotypes 

 

Cluster No of genotypes 

I 18 

II 29 

III 36 

IV 15 

V 24 

VI 42 

VII 25 

VIII 34 

IX 15 

X 15 

 

Table 4: Intra and Inter cluster distance between clusters 
 

Clusters I II III IV V VI VII VIII IX X 

I 2.671          

II 4.128 2.167         

III 5.559 3.279 2.886        

IV 5.801 2.737 4.070 2.517       

V 4.833 3.536 4.230 3.562 2.170      

VI 3.960 3.062 5.077 3.327 2.888 2.302     

VII 5.175 3.238 4.957 3.188 2.812 2.214 2.388    

VIII 3.935 2.587 2.831 3.335 2.879 2.767 3.010 2.342   

IX 3.225 2.848 3.477 4.304 3.415 4.091 4.423 3.155 2.442  

X 5.984 4.146 4.032 3.606 2.478 3.283 3.565 3.118 4.780 2.312 
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Table 5: Cluster mean values for all quantitative characters 
 

Cluster  

Days to 

flowering 

(DAS) 

Days to 

maturity 

(DAS) 

Plant 

height 

(cm) 

Flag leaf 

length 

(cm) 

Flag 

leaf 

width 

(cm) 

Length of 

raceme 

(cm) 

Productive 

tillers 

Number of 

grains per 

raceme 

Biological 

yield (g) 

Harvest 

index 

(%) 

Test 

weight 

(g) 

Grain 

yield per 

raceme 

(g) 

I Mean 55.83 92.67 55.56 25.94 0.72 6.97 8.26 265.17 4.88 30.30 5.51 1.46 

 SE± 6.33 6.25 10.27 6.33 0.10 0.85 1.53 22.65 0.47 2.09 0.25 0.13 

II Mean 69.41 105.66 69.93 28.99 0.81 7.02 7.87 269.34 4.37 36.30 5.92 1.59 

 SE± 3.74 3.98 8.31 5.21 0.13 0.82 1.15 23.40 0.30 1.19 0.20 0.12 

III Mean 73.53 110.17 81.74 36.51 0.80 7.86 9.23 316.97 5.37 34.52 5.99 1.85 

 SE± 4.78 4.75 7.82 7.18 0.14 1.28 1.42 29.01 0.39 1.92 0.46 0.17 

IV Mean 74.07 109.20 90.46 31.59 0.81 7.52 8.07 229.87 4.15 35.24 6.49 1.46 

 SE± 5.86 5.23 5.78 7.91 0.10 0.74 1.10 27.01 0.35 1.79 0.46 0.13 

V Mean 69.05 106.40 82.69 39.83 0.91 9.40 8.17 250.35 4.29 32.00 5.42 1.37 

 SE± 3.90 4.51 5.98 5.97 0.14 0.76 1.00 15.37 0.36 1.75 0.26 0.10 

VI Mean 68.74 105.50 76.13 31.92 0.71 7.07 6.98 229.62 4.02 31.51 5.53 1.26 

 SE± 3.33 3.10 10.86 5.25 0.10 0.96 0.95 18.34 0.26 2.14 0.41 0.08 

VII Mean 73.16 109.96 84.67 29.14 0.96 6.96 6.68 238.52 4.05 32.27 5.42 1.30 

 SE± 5.14 6.00 7.03 7.54 0.09 0.91 1.01 18.72 0.34 1.92 0.36 0.08 

VIII Mean 70.29 107.94 82.56 28.44 0.75 7.42 8.61 275.76 4.89 31.71 5.53 1.55 

 SE± 3.71 4.77 8.39 5.40 0.10 1.16 1.28 13.19 0.38 1.85 0.31 0.10 

IX Mean 59.67 96.47 72.93 37.00 0.91 7.74 8.57 283.13 4.92 33.85 5.82 1.66 

 SE± 3.79 4.91 9.58 7.08 0.12 1.03 1.36 17.19 0.36 1.71 0.37 0.08 

X Mean 76.20 114.40 87.56 45.50 0.69 8.94 7.58 254.40 4.49 31.51 5.57 1.42 

 SE± 3.23 4.40 5.93 4.92 0.10 1.08 1.14 26.46 0.41 1.47 0.36 0.16 

 

 
 

Fig 2: Dendrogram representing clustering pattern of 250 mutant lines. 

 

Regression Analysis  

In the current research, multiple linear regression (MLR) 

was employed as a statistical tool to examine the 

relationship between a dependent variable (grain yield per 

raceme) and several independent variables, including days 

to 50% flowering, days to maturity, plant height, flag leaf 

length, raceme length, harvest index, number of grains per 

raceme, test weight, flag leaf width, biological yield, and 

productive tillers. This approach is widely used in plant 

breeding to evaluate how different morphological and 

agronomic traits influence yield, thereby helping in the 

identification of traits with the greatest impact, prioritizing 

selection criteria, and understanding both direct and indirect 

contributions of traits to productivity. 

The results revealed that traits such as biological yield (p = 

0.000), number of grains per raceme (p = 0.000), harvest 

index (p = 0.000), and test weight (p = 0.004) showed 

statistically significant positive effects on grain yield per 

raceme, indicating that these are key yield-contributing 

traits. The positive significance of these characters suggests 

that improvement in these traits would lead to corresponding 

enhancement in grain yield. The regression slopes of all 

significant characters are presented in the following 

sections. 
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Table 6: Parameter estimates table of regression analysis 
 

Parameter 
Un-

Standardized 

Standard 

Error 

t-

value 
p-value 

Const -1.506 0.038 
-

39.855 
0.000 

Days to flowering 

(DAS) 
0.001 0.001 1.222 0.223 

Days to maturity 

(DAS) 
0.000 0.001 -0.644 0.520 

Plant height (cm) 0.000 0.000 1.650 0.100 

Flag leaf length (cm) 0.000 0.000 0.061 0.951 

Flag leaf width(cm) 0.004 0.010 0.373 0.709 

Length of raceme 

(cm) 
0.000 0.001 0.176 0.860 

Productive tillers 0.000 0.001 0.408 0.684 

Number of grains per 

raceme 
0.001 0.000 4.734 0.000** 

Biological yield per 

plant (g) 
0.300 0.007 43.009 0.000** 

Harvest index (%) 0.041 0.001 37.352 0.000** 

Test weight (g) 0.016 0.005 2.945 0.004** 

 

Harvest index (%) 

Grain yield per raceme exhibited a significant association 

with harvest index. The positive slope indicates a linear 

relationship between the two traits. The coefficient of 

determination (R²) was 0.234, suggesting that harvest index 

alone accounted for 23.74% of the variation in grain yield 

per raceme. This reflects a moderate level of correlation and 

also implies that other traits contribute to yield variation. In 

the regression plot, blue dots represent the observed values. 

A closer clustering of these dots around the regression line 

denotes a good model fit with lower residual error, whereas 

a wider dispersion indicates greater variability. 

 

Test weight (g) 

The positive slope confirms a linear association between 

grain yield and test weight. The R² value of 0.1625 indicates 

that test weight accounts for 16.25% of the variation in grain 

yield, reflecting a relatively weak correlation. Although both 

harvest index and test weight show positive linear 

relationships with grain yield per raceme, harvest index 

emerges as a slightly stronger predictor based on its higher 

R² value. 

 

Number of grains per raceme 

The graph illustrates a positive association between the 

number of grains per raceme and grain yield per raceme. An 

increase in grain number corresponds to a rise in yield per 

raceme. The coefficient of determination (R² = 0.7547) 

indicates that about 75.47% of the variation in grain yield is 

explained by the number of grains per raceme. This high R² 

value reflects a strong correlation, establishing it as a 

reliable predictor trait. 

 

Biological yield per plant (g) 
A positive linear relationship was also observed between 

biological yield and grain yield per raceme. Although the R² 

value was slightly lower than that of number of grains per 

raceme, it still demonstrated a strong positive association. 

Biological yield accounted for 71.03% of the variation in 

grain yield per raceme. The slope further indicated that grain 

yield per raceme increases at a faster rate with rising 

biological yield compared to the increase observed with 

number of grains. 

 
 

a) Harvest index 
 

 
 

b) Test weight 
 

 
 

c) Number of grains per raceme 

 

 
 

d) Biological yield 
 

Fig 3: Regression lines graph of yield related characters 

with respect to grain yield. 
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Conclusion  

Principal Component Analysis (PCA) revealed significant 

variability among 250 mutant lines and has identified four 

major components explaining 71.5% of the total variation, 

with grain yield per raceme, number of grains per raceme, 

biological yield, and days to flowering as major 

contributors, thereby highlighting these traits as critical 

selection indices. Multiple linear regression analysis 

confirmed that traits such number of grains per raceme, 

biological yield, and harvest index explained a substantial 

proportion of the variability in grain yield. This analytical 

confirmation of their predictive value underscores their 

utility as key selection traits. Cluster analysis has showed 

high degree of genetic diversity suggesting that genetic 

makeup of mutant lines falling in this cluster may be 

entirely different from one another and thus may be utilized 

for future breeding programmes. Combining PCA, cluster 

and regression analyses provided a comprehensive 

understanding of variability, trait relationships and potential 

breeding value among mutants. 
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