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Abstract 
Insect-plant interactions form the backbone of terrestrial ecosystems, influencing biodiversity, 
ecosystem stability, and agricultural productivity. These interactions are governed by complex 
biochemical processes that regulate defence, communication, and adaptation. Climate change stressors, 
including elevated CO₂, heat waves, drought, and air pollution, profoundly reshape these biochemical 
dynamics by altering primary metabolism, secondary metabolites, and hormonal signalling. Such shifts 
influence insect feeding, detoxification strategies, and the stability of multitrophic networks, ultimately 
affecting crop protection and pollination services. Insects exhibit remarkable biochemical plasticity, 
including enzyme adaptation, detoxification, sequestration, and antioxidant defences, allowing them to 
persist in stressed environments. This review synthesises current understanding of biochemical 
responses in plants under climate stress, the adaptive mechanisms of insects, and disruptions in tri-
trophic signalling. Case studies highlight how stress-modulated metabolites reshape pest dynamics in 
crops like cotton and ecological relationships in specialist systems such as monarch-milkweed. 
Understanding these biochemical shifts is vital for designing climate-resilient integrated pest 
management (IPM) strategies, breeding stress-tolerant cultivars, and applying defence-priming 
technologies. A systems-level, biochemically informed approach is essential to sustain agriculture 
under accelerating climate change. 
 
Keywords: Insect-plant interactions, primary metabolism, secondary metabolites, volatile organic 
compounds, insect biochemical adaptations, climate stress, tri-trophic interaction, integrated pest 
management 
 
1. Introduction 
Insect-plant interactions are essential ecological relationships that can be antagonistic, 
commensal, or mutualistic. Antagonism occurs when insects harm plants by feeding on them, 
reducing growth and health. In contrast, commensalism involves insects benefiting from 
plants with little or no effect on them, such as aphids extracting sap in small numbers. 
Mutualistic interactions benefit both partners, as seen in pollination, where insects like bees 
gain nectar while enabling plant reproduction (Schoonhoven et al., 2005; Belete, 2018) [5]. 
These diverse interactions not only shape ecosystems but also influence agricultural 
productivity and reflect the co-evolutionary dynamics between plants and insects, often 
mediated by complex biochemical signals and adaptive traits. 
Plants protect themselves from insect attacks using two main strategies: direct defences and 
indirect defences. Direct defences include physical barriers such as trichomes, spines, thorns 
and lignified tissues, and chemical compounds that slow down insect feeding, growth, 
development, and reproduction. Indirect defences do not harm insects directly, but work by 
emission of specific volatile compounds that attract predators and parasitoids, functioning as 
“extended bodyguards” (Howe and Jander, 2008; Dicke and Baldwin, 2010) [33, 20] 

Global climate change introduces significant complexity into plant defence systems. The 
effects of rising temperatures and increased CO₂ on basic plant metabolism are primarily 
known, but their impact on secondary metabolism and defence signalling is unclear. 
Evidence suggests that higher CO₂ levels can suppress jasmonic acid (JA)-mediated 
defences, which play a key role in protecting plants against chewing insects, while 
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 simultaneously enhancing salicylic acid (SA)-mediated 
pathways that strengthen resistance against pathogens 
(Belete, 2018; Zavala et al., 2017) [5, 104] 

This hormonal rebalancing may leave plants more 
vulnerable to insect herbivores but more tolerant to 
microbial infections. Such trade-offs highlight the 
importance of understanding how climate-driven shifts in 
plant biochemistry will influence future plant-insect 
interactions and the resilience of agricultural systems. 
  
2. Climate Stress and Plant Biochemistry 
2.1 Primary Metabolism Under Climate Stress 
Primary metabolism forms the biochemical foundation of 
plant growth and defence, encompassing carbon 
assimilation, nitrogen metabolism, carbohydrate production, 
and amino acid biosynthesis. These processes are highly 
sensitive to stressors such as elevated CO₂, heat, drought, 
and ozone, which influence plant-insect interactions. 
 
2.1.1 Carbon and Nitrogen Metabolism 
Elevated CO₂ enhances photosynthetic carbon fixation in C₃ 
plants, increasing biomass and carbohydrate supply, but 
long-term exposure often leads to photosynthetic 
acclimation due to carbohydrate feedback inhibition 
(Ainsworth & Long, 2005; Leakey et al., 2009) [2, 50]. Heat 
and drought stress damage photosystems and limit stomatal 
conductance, while ozone accelerates oxidative injury, 
degrades chlorophyll and decreases Rubisco activity (Fiscus 
et al., 2005) [25]. Elevated CO₂ also drives nitrogen dilution, 
lowering tissue protein content and altering C: N ratios 
(Taub & Wang, 2008) [83]. Heat may temporarily stimulate 
nitrate reductase activity, but prolonged drought or ozone 
typically suppresses nitrogen assimilation by impairing root 
function and reducing enzyme activity (Pell et al., 1997; 
Bloom, 2015) [65, 15]. These shifts reduce plant nutritional 
quality for herbivores, often reducing their growth and 
reproduction. 
 
2.1.2 Carbohydrates and Amino Acids 
Carbohydrates serve as energy reserves and also as 
signalling molecules in stress adaptation. Elevated CO₂ 
enhances soluble sugars and starch reserves, whereas 
drought restricts transport and metabolism, and high 
temperatures deplete reserves through increased respiration 
(Couée et al., 2006; Leakey et al., 2009) [17, 50]. Ozone 
inhibits sugar metabolism via oxidative degradation. Amino 
acids respond variably: CO₂-induced nitrogen limitation 
lowers total amino acid content due to nitrogen limitation 
(Taub & Wang, 2008) [83], while drought and salinity 
promote accumulation of Osmo protectants such as proline, 
glycine betaine, and GABA (Krasensky & Jonak, 2012) [43]. 
Heat stress induces synthesis of amino acids required for 
heat-shock proteins, and ozone alters amino acid balance as 
part of stress signalling. Since amino acids and sugars are 
central determinants of herbivore food quality, climate-
induced alterations in their availability directly affect insect 
feeding, growth, and survival. 
 
2.2 Secondary Metabolites Under Climate Stress 
Secondary metabolites are a chemically varied category of 
substances crucial for signalling, defence, and 
environmental adaptability. Among them, terpenes, 
phenolics, flavonoids, tannins and alkaloids are pivotal in 
mediating plant-insect interactions. Temperature, increased 

CO₂, ozone, and drought significantly affect their 
biosynthesis, accumulation, and emission, changing plants' 
ecological interactions and defence ability. 
 
2.2.1 Phenolics, Flavonoids and Tannins 
Phenolic compounds derived from the phenylpropanoid and 
shikimate pathways serve as antioxidants, structural 
components, and defence molecules. Flavonoids are a large 
and multifunctional class of phenolics that are highly 
responsive to abiotic stress. Elevated CO₂ often enhances 
phenolic and tannin production via carbon-nutrient balance 
(Peñuelas & Estiarte, 1998; Barbehenn & Constabel, 2011) 

[4, 66]. Drought, UV-B, and ozone further promote their 
accumulation as scavengers of reactive oxygen species 
(ROS) (Agati et al., 2012) [1]. Tannins interfere with protein 
digestion, while flavonoids act as UV protectants and 
signalling molecules. However, due to resource trade-offs, 
phenolic and tannin levels may plateau or decline under 
severe or prolonged stress. These compounds generally 
strengthen defence but vary across species and stress 
combinations. 
 
2.2.2 Terpenes 
The most prominent family of secondary metabolites, 
terpenoids, have two functions: direct defence (toxicity, 
deterrence) and indirect defence (herbivore-induced 
volatiles attracting natural enemies). Their biosynthesis and 
release are highly sensitive to abiotic stress. Elevated 
temperature and moderate drought stimulate terpene release, 
whereas severe drought suppresses synthesis (2012 
 & Llusià, 2003; Loreto & Schnitzler, 2010) [55]. Elevated 
CO₂ produces species-specific outcomes, with some plants 
accumulating more stored monoterpenes. Ozone often 
induces terpene release as part of oxidative stress signalling. 
These shifts strongly influence insect behaviour and 
multitrophic interactions. 
 
2.2.3 Alkaloids 
Alkaloids are nitrogen-rich substances acting as neurotoxins 
and deterrents. Their production depends on nitrogen 
availability. According to the nitrogen restriction theory, 
elevated CO₂ often results in nitrogen dilution in plant 
tissues, which lowers alkaloid concentrations (Zavala et al., 
2013) [102]. Conversely, by upregulating stress-related 
pathways, drought and other stressors can promote the 
production of alkaloids (Hartmann, 2007) [30]. These 
context-dependent responses suggest that climate stress may 
reduce or enhance plant chemical defences depending on the 
balance between carbon and nitrogen metabolism. 
 
2.3 Signalling Molecules Under Climate Stress 
Plant signalling molecules such as jasmonic acid (JA), 
salicylic acid (SA), and ethylene (ET) play central roles in 
coordinating defence responses against herbivores and 
pathogens. Their biosynthesis and signalling networks are 
susceptible to climate stress, which can shift defence 
allocation and alter insect-plant interactions. 
 
2.3.1 Jasmonic Acid (JA) 
JA is an essential protective regulator against chewing 
insects by promoting the synthesis of volatile chemical 
compounds, alkaloids, terpenoids, and proteinase inhibitors. 
Elevated CO₂ frequently suppresses JA signalling due to 
nitrogen dilution and restricted substrate supply (Zavala et 
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 al., 2008) [103], which weakens inducible defences. In 
contrast, drought and heat generally enhance JA 
accumulation, linking it with stomatal regulation and 
osmotic adjustment (Sharma et al., 2013) [77]. Ozone also 
stimulates JA pathways, since oxidative stress mimics 
herbivory and activates similar defence cascades (Vuorinen 
et al., 2004) [88]. 
 
2.3.2 Salicylic Acid (SA)  
Salicylic acid (SA) is the primary mediator of resistance 
against piercing-sucking insects and biotrophic pathogens. It 
frequently has a negative connection with JA, and stress can 
upset this equilibrium. Increased CO₂ has had a variety of 
effects. SA signalling may increase in some situations, 
enhancing pathogen resistance but potentially suppressing 
JA-based herbivore defence (Zhou et al., 2019) [108]. Drought 
typically induces SA, aiding ROS detoxification and 
stomatal closure, whereas heat stress can suppress SA and 
lower disease resistance (Khan et al., 2015) [42]. Ozone 
consistently increases SA accumulation, as part of systemic 
acquired resistance (Yalpani et al., 1994) [97]. 
 
2.3.3 Ethylene (ET) 
Ethylene is a multipurpose hormone that influences 
defences mediated by JA and SA. Elevated CO₂ usually 
reduces ET synthesis, weakening synergistic defence 
signalling (Zavala et al., 2008) [103]. Heat stress strongly 
enhances ET, accelerating stress tolerance pathways, 
senescence, and abscission (Suzuki et al., 2014) [82]. 
Depending on its intensity, drought stress can change 
defensive activation and growth regulation by raising or 
lowering ET. According to Booker et al. (2009) [10], 
exposure to ozone causes a sharp rise in ET emissions, 
which speeds up stress signalling and leaf withering. 
 
2.4 Volatile Organic Compounds (VOCs) and Tritrophic 
Interactions 
Plants emit diverse volatile organic compounds (VOCs) that 
mediate both plant-plant signalling and plant-insect-enemy 
interactions. Two key groups are green leaf volatiles 
(GLVs), released immediately after tissue damage, and 
herbivore-induced plant volatiles (HIPVs), which are 
produced more slowly in response to insect feeding. These 
compounds play a central role in indirect defence by 
attracting predators and parasitoids of herbivores, thereby 
shaping tri-trophic interactions. 
 
2.4.1 Green Leaf Volatiles (GLVs) 
GLVs are C₆ compounds such as (Z)-3-hexenal, (Z)-3-
hexen-1-ol, and (Z)-3-hexenyl acetate, released instantly 
after mechanical or herbivore damage. They function as 
“alarm signals”, priming defences in neighbouring plants 
(Engelberth et al., 2004) [21] and providing chemical cues for 
natural enemies of herbivores (Arimura et al., 2009) [3]. 
GLV release is influenced by climate stress: heat and 
drought frequently cause an increase in GLV emissions 
because of increased lipid peroxidation, whereas high CO₂ 
can decrease them (Loreto & Schnitzler, 2010) [55]. 
 
2.4.2 Herbivore-Induced Plant Volatiles (HIPVs) 
HIPVs include terpenoids, phenylpropanoids, and GLVs, 
produced after herbivore feeding. They attract parasitoids 
and predators (Turlings & Erb, 2018) [84], while also 
mediating plant-plant communication. HIPV responses to 

climate stress are complex: Elevated CO₂ often reduces 
HIPVs, weakening parasitoid attraction (Gouinguené & 
Turlings, 2002) [28]. High temperature generally increases 
HIPV release but may alter timing and blend composition 
(Peñuelas & Staudt, 2010) [68]. Drought can suppress HIPVs 
due to reduced metabolic activity yet enhance specific 
compounds as stress signals (Copolovici et al., 2014) [16]. 
Ozone stimulates VOC synthesis but rapidly oxidises HIPVs 
in the atmosphere, reducing their signalling range 
(Holopainen & Gershenzon, 2010) [32]. Climate-driven 
changes in GLVs and HIPVs can disrupt these tritrophic 
interactions, reducing herbivore suppression or shifting 
community dynamics (Zavala et al., 2017) [104]. For 
example, reduced HIPV signalling under elevated CO₂ may 
limit parasitoid efficiency, while moderate warming may 
transiently enhance enemy attraction. 
 
3. Insect Biochemical Adaptations 
Insects and plants are engaged in a continuous evolutionary 
arms race, where plants defend themselves with toxic 
secondary metabolites and insects respond with specialised 
behavioural, physiological and biochemical mechanisms, 
which allow them to feed on chemically defended plants 
(Berenbaum, 2001; Karban and Agrawal, 2002) [7, 40]. 
 
3.1 Digestive enzymes 
Insects play a crucial role in shaping their digestive enzyme 
activity within the midgut according to the plants they 
consume, enabling them to efficiently process and extract 
nutrients from diverse and often chemically defended plant 
tissues (Kutty and Mishra, 2023; Beran and Petschenka, 
2022) [6,48]. Digestive enzymes are thus central to insect 
adaptation, allowing insects to thrive in varied and 
sometimes hostile plant environments. Environmental 
factors such as temperature and elevated CO₂ can alter 
enzyme activity and gut efficiency, but insects compensate 
by adjusting enzyme secretion to maintain effective nutrient 
absorption under stress (Zhang et al., 2024) [106]. In addition, 
some plant-feeding insects acquire novel digestive enzyme 
genes from gut microbes through horizontal gene transfer, 
providing them with new metabolic tools to digest complex 
plant materials more effectively (Wang et al., 2021) [91]. 
 
3.2 Detoxification enzymes 
Detoxification enzymes in insects (like P450s, GSTs, 
UGTs) act as biochemical shields that work against toxic 
plant metabolites, ensuring survival in chemically hostile 
environments. Insects employ a three-phase detoxification 
system to counter harmful plant secondary metabolites. In 
the first phase, ingested compounds are broken down by 
enzymes such as cytochrome P450s, carboxylesterases, and 
flavin-containing monooxygenases, either within the insect 
itself or through symbiotic gut microbes. In the second 
phase, toxic intermediates undergo conjugation reactions, 
mediated by enzymes like glutathione S-transferases and 
glycosyltransferases, which enhance solubility and facilitate 
excretion. Finally, in the third phase, the modified 
metabolites are expelled from cells via ATP-binding 
cassette transporters (Hu et al., 2019; Heidel-Fischer and 
Vogel, 2015; Chen et al., 2020) [35,31,15]. Within this 
framework, Spodoptera litura detoxifies the plant defence 
compound xanthotoxin through UDP-glycosyltransferases 
(UGTs), whose expression and activity are essential for 
larval tolerance. Notably, the CncC/MafK transcriptional 
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 pathway has been shown to directly regulate UGT 
expression, thereby mediating xanthotoxin detoxification 
and illustrating how insects integrate core detoxification 
phases with transcriptional control mechanisms to adapt to 
plant chemical defences (yang et al., 2025) [98]. 
 
3.3 Sequestration strategies 
The ability of insect herbivores to selectively absorb and 
store toxic compounds from their host plants is a key trait 
influencing their survival and success on highly defended 
plants, especially in environments with numerous natural 
enemies (Opitz and Muller, 2009) [62]. Insects achieve this 
through a combination of physiological mechanisms: 
passive diffusion or active transport proteins such as ABC 
and SLC transporters, depending on the chemical properties 
of the compound, move plant-derived toxins—like 
glucosinolates—into protected storage sites, including the 
haemolymph, cuticle, or fat body (Dermauw and Van, 2014) 

[18]. For example, in the milkweed bug (Oncopeltus 
fasciatus), the cardiac glycoside digitoxin is thought to cross 
the midgut lining passively. In contrast, in the desert locust 
(Schistocerca gregaria) and the American cockroach 
(Periplaneta americana), the midgut prevents this 
compound from entering (Scudder and Meredith, 1982) [76]. 
This demonstrates that the ability of plant defence chemicals 
to cross the gut barrier is a significant factor shaping the 
evolution of sequestration strategies. 
In the poplar leaf beetle (Chrysomela populi), scientists 
discovered an ABC transporter, CpMRP, strongly expressed 
in the defensive glands. This protein uses energy from ATP 
to move salicin, a plant compound ingested by the beetle, 
into storage vesicles within the glands. Salicin is 
transformed into salicyl aldehyde, the beetle’s primary 
defensive secretion. When CpMRP is knocked down, the 
beetles cannot produce their chemical defence, showing that 
CpMRP plays a crucial role in capturing plant compounds 
and enabling the beetle’s protective chemistry (Strauss, 
2013) [80]. 
Once stored, these compounds are often further processed 
by detoxification pathways. Enzymes modify the toxins 
through conjugation (Phase II) and then transport them 
(Phase III), enabling insects to retain the defensive benefits 
of the chemicals while avoiding self-harm (Jeckel et al., 
2022) [39]. Early research in the 1960s and 1970s provided 
striking evidence of this phenomenon: monarch butterflies 
feed on toxic milkweed, store the toxins, and become 
poisonous to predators such as birds (Brower et al., 1967; 
Malcolm, 1994) [11, 57]. Initially thought to be a unique 
example, subsequent studies have shown that many insect 
species specialising in toxic plants similarly sequester plant 
chemicals to enhance their survival (Nishida, 2002; Opitz 
and Muller, 2009) [61, 62]. These findings illustrate how 
absorption, storage, and detoxification allow herbivorous 
insects to exploit plant defences as a powerful protective 
strategy. 
  
3.4 Antioxidant defences 
Antioxidant enzymes such as superoxide dismutase (SOD), 
catalase (CAT), and glutathione peroxidases (GPX) help 
neutralise reactive oxygen species (ROS) produced in 
insects during metabolic or environmental stress, thereby 
protecting cellular components from oxidative damage 
(Felton and Summers, 1995) [24]; in particular, these 
enzymes provide defence against oxidative stress induced 
by plant defence compounds. 

4. Tri-Trophic Interactions under Climate Stress 
In natural ecosystems, plant-insect interactions rarely occur 
as simple two-way relationships; instead, they often appear 
in complex tri-trophic systems where plants, herbivores, 
pollinators, and natural enemies such as parasitoids and 
predators are linked through intricate biochemical and 
ecological signals (Turlings and Erb, 2018; Strauss and 
Irwin, 2004) [84, 81]. These interactions are governed mainly 
by herbivore-induced plant volatiles (HIPVs), floral traits, 
and nectar resources, which influence herbivore behaviour 
and guide natural enemies and pollinators. However, climate 
stressors—including heat waves, drought, and air pollution 
alter the quantity, composition, and persistence of these 
chemical signals, thereby disrupting natural pest control and 
pollination services. 
 
4.1 Plant-Herbivore-Parasitoid Interactions 
Plants under herbivore attack emit a diverse blend of 
herbivore-induced plant volatiles (HIPVs), which play a 
significant role in indirect plant defences by guiding natural 
enemies to herbivores. However, these chemical signals are 
vulnerable to environmental stress. For instance, maize 
plants showed inconsistent emission patterns of (Z)-3-
hexenyl acetate and linalool under herbivory, influencing 
insect attraction (Block et al., 2018) [8]. Similarly, in potato 
plants, heat stress has been found to modify jasmonate-
regulated defence pathways, which in turn shifts both the 
timing and composition of herbivore-induced volatile 
emissions such as sesquiterpenes and green leaf volatiles 
(Zhong et al., 2024) [107]. The instability of HIPVs under 
climate stress has profound consequences for higher trophic 
levels, particularly parasitoids and predators. Ye et al. 
(2018) [100] demonstrated that in Spodoptera littoralis, 
herbivore-induced volatiles can modify caterpillar odours in 
ways that reduce their attractiveness to parasitoid Cotesia 
marginiventris, thereby creating unreliable cues that may 
confuse natural enemies. Drought stress further complicates 
this defence system. Research on Arabidopsis thaliana and 
other model plants subjected to water limitation revealed an 
increase in direct defences like phenolic compounds, while 
indirect defences reduced due to the disruption of volatile-
mediated parasitoid attraction (Lin et al., 2022) [54].  
Beyond plant-herbivore dynamics, adverse weather 
conditions impair natural enemy foraging. Under combined 
humidity and temperature stress, Li et al. (2024) [106] found 
that interactions between Plutella xylostella (Diamondback 
moth) and its parasitoid Diadegma semiclausum were 
modified in both species- and age-dependent ways, showing 
how environmental variability directly affects parasitoid 
performance. Similarly, Vosteen et al. (2020) [87] reported 
that stormy weather reduced the odour-guided host-finding 
efficiency of parasitoids by disrupting their ability to detect 
key HIPVs like (E)-β-caryophyllene and indole. Together, 
these findings suggest that although plants may enhance 
biochemical resistance under stress, climate change 
destabilises HIPV-mediated communication, weakening 
indirect defences and threatening the stability of tri-trophic 
networks. 
 
4.2 Plant-Pollinator Interactions 
Pollinator attraction, another key link in the tri-trophic 
network, is highly affected by climate stress. Drought 
consistently reduces floral rewards, including nectar and 
pollen, lowering pollination success in both wild and crop 
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 systems (Waser and Price, 2016; Buchmann and Papaj, 
2024) [12, 94]. For instance, a decline in nectar sugars and 
amino acids directly impairs pollinator health. Apis mellifera 
and Bombus terrestris colonies show reduced survival and 
productivity when foraging in water-limited environments 
(Wilson Rankin et al., 2020) [96]. Quinanzoni et al. (2024) [70] 
further illustrated that urban and ornamental plants exposed 
to drought lose their visual appeal and olfactory cues, 
rendering them less attractive to pollinators.  
Air pollutants, particularly ozone (O₃), contribute further to 
disruption by breaking down essential floral volatiles like 
linalool, benzaldehyde, and (E)-β-ocimene. These 
substances are crucial chemical cues that lead pollinators 
such as Bombus terrestris and Apis mellifera to flower 
resources. Farré-Armengol et al. (2016) [23] and Fuentes et 
al. (2016) [26] showed that ozone reduces the stability of 
floral volatiles, breaking up odour plumes and making 
pollinators spend more time foraging while visiting fewer 
flowers. Extending this, Langford et al. (2023) [49] showed 
that polluted air masses distort floral odour trails, making 
them unreliable over long distances. Along with drought, 
climate stress weakens plant-pollinator communication, 
contributing to decline in pollinators, biodiversity loss, and 
reduced crop yields. 
 
4.3 Interactive Stresses and Ecological Trade-offs 
Environmental stressors rarely act in isolation but interact in 
complex and sometimes antagonistic ways. For example, 
drought can enhance direct volatile-mediated defences in 
plants while reducing their capacity to attract parasitoids, 
resulting in a trade-off between self-defence and guiding 
natural enemies (Lin et al., 2022) [54]. Likewise, Pinto-
Zevallos and Blande (2024) [69] highlighted that climate 
change and air pollution are dual stressors that constrain 
plants’ ability to coordinate defence and reproduction 
through volatile cues. From a broader ecological 
perspective, such disruptions exemplify how multi-species 
interactions are highly vulnerable to environmental 
stressors, with cascading consequences for biodiversity, 
ecosystem services, and agricultural stability (Strauss & 
Irwin, 2004) [81]. 
In addition to modifying plant signalling, climate stress 
directly affects insect physiology and behaviour, reshaping 
host-parasitoid dynamics. Waterman et al. (2024) [95] further 
demonstrated that HIPVs can propagate in rhythmic patterns 
among neighbouring plants, facilitating defence priming 
within plant communities, which may be interrupted during 
environmental extremes. These findings indicate that stress 
factors may restrict both within-plant and between-plant 
signalling at the same time, thereby diminishing the 
ecological reliability of tri-trophic interactions. 
 
5. Case studies 
Case study 1: Breaking Chemical Barriers: How Insects 
Detoxify Plant Defence Metabolites. 
According to Kshatriya et al. (2024) [44], insect herbivores 
use detoxification enzymes from large gene families to 
overcome toxic plant metabolites. These enzymes function 
to functionalize toxins or conjugate them with polar 
substituents, reducing toxicity, increasing water solubility, 
and improving excretion. These enzymes are more abundant 
in generalists but also present in specialists. Insect 
microbiomes also play a role in detoxification, processing 
plant toxins. Detoxification gene families encode enzymes 

with broad substrate specificity, making insects adept at 
metabolising diverse plant toxins and synthetic insecticides. 
 
Case study 2: Effects of Salt Stress on Aphid 
Development-Related Gene Expression and Secondary 
Metabolites in Cotton 
A study conducted by Wang et al. (2015) [89] shows salt 
stress significantly impacts cotton's secondary metabolites, 
increasing the accumulation of substances like gossypol, 
flavonoids, and tannin. These substances are essential for 
plant defence against aphids and other insect pests. Aphid 
populations decrease with increased secondary metabolism, 
leading to gene expression modulation. Secondary 
metabolites like polyphenols, flavonoids, and alkaloids 
improve plant tolerance to salt stress and deter insect 
invasion. Salt stress also affects osmo-protectants like 
proline and soluble sugars, contributing to cotton stress 
tolerance and pest resistance. 
 
Case study 3: Chemical Constraints and Coadaptation in 
Insect-Plant Evolution 
Scriber (2002) [74] stated that coadaptations, chemical 
limitations, and phenotypic congruence influence the 
evolution of insect-plant relationships. Plant secondary 
chemicals constrain insect herbivores, shaping their feeding 
preferences and evolutionary pathways. Insect adaptation 
involves complex physiological and behavioural changes, 
while coevolution aligns insect sensory and metabolic traits 
with plant chemical profiles, resulting in ecological 
specialisation. 
 
Case study 4: Dynamic Modulation of Arabidopsis 
Jasmonate Pathway during Insect Attack 
Verhage et al. (2014) [86] recorded that the jasmonate 
signalling system in Arabidopsis is rewired during insect 
herbivory to optimise defence responses and minimise 
growth penalties. This complex network, involving 
pathways like salicylate and ethylene, fine-tunes plants' 
response to insect attack. Jasmonate signaling also 
orchestrates the production of defensive proteins and 
secondary metabolites, demonstrating the intricacy of plant 
defense mechanisms in biotic stress. 
 
6. Implications for Agriculture and Pest Management 
Climate-driven stresses such as heat, drought, and increased 
CO₂ will alter the biochemical composition of plants, which 
increases insect feeding and disrupts natural enemy 
regulation (Deutsch et al., 2018) [19]. These stress-induced 
changes can weaken the stability of traditional pest control 
approaches because herbivore resistance traits may be 
reduced while biocontrol efficiency declines (n et al., 2021; 
Nalam et al., 2021) [60]. Such shifts underline the necessity 
of integrating plant biochemical responses into future 
Integrated Pest Management (IPM) strategies. 
 Abiotic stress leads to a decline in nitrogen levels and 
secondary defence compounds in plants, which will alter the 
growth and reproduction (Gupta et al., 2020; Smilanich et 
al., 2016) [29, 79]. Stress conditions may also increase the 
tolerance of insecticides and interfere with induced plant 
defences, further complicating field management (Shrestha 
et al., 2023; Kumar et al., 2022) [78, 47]. Therefore, it is 
critical to develop stress-resilient cultivars that are capable 
of maintaining metabolic defence pathways, such as 
phenolics, alkaloids, and terpenoids, even under climate 
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 extremes, which is becoming increasingly critical (Pandey 
& Pandey, 2020) [63]. 
Another promising direction is to use defence priming 
technologies—chemical elicitors, microbial inoculants, and 
RNA-based sprays—that activate latent biochemical 
pathways before pest attack, resulting in faster and stronger 
defence responses (Mauch-Mani et al., 2017; Martinez-
Medina et al., 2022; Kaur et al., 2023) [59, 58, 41]. Combined 
with biocontrol and cultural practices, priming offers a 
sustainable solution to reinforce crop resilience. These 
insights suggest that future agricultural systems must adopt 
biochemically informed IPM, in which breeding, 
biotechnology, and agroecological practices are aligned with 
the realities of climate stress and insect adaptation. 
 
7. Future Directions 
Future research should move beyond single-stress 
experiments and adopt multifactorial designs that reflect real 
field conditions, where heat, drought, elevated CO2 and 
nutrient limitations act simultaneously. Such approaches 
will provide more accurate predictions of how plant-insect-
natural enemy interactions evolve under climate change 
(Jamieson et al., 2012; Lehmann et al., 2020) [38, 52]. 
A second priority is the application of omics-based tools—
including metabolomics, transcriptomics, proteomics, and 
genome editing—to unravel how plants dynamically 
regulate biochemical defence pathways under stress. These 
tools will help identify molecular markers that breeders can 
exploit to breed for stress-resilient and pest-tolerant 
cultivars (Pandey & Pandey, 2020) [64]. In particular, 
CRISPR/Cas-mediated editing of key genes involved in 
secondary metabolism offers novel opportunities for 
tailoring crop resistance traits in a climate-smart context 
(Zhu et al., 2020) [109]. 
Research should also expand its scope beyond herbivory, as 
parasitoids, pollinators, and soil-dwelling insects are also 
equally vulnerable to climate stress, and disruptions to their 
functions may alter ecosystem services and indirectly 
intensify pest outbreaks (Gillespie et al., 2016; Rasmann et 
al., 2014) [27, 71]. Thus, a more holistic approach 
incorporating mutualists and natural enemies into 
experimental designs will be crucial for developing 
ecologically realistic pest management strategies. 
Another pressing direction is the integration of plant 
biochemical responses into pest forecasting and early-
warning systems. Current models primarily use temperature-
driven population dynamics, but coupling these with stress-
induced changes in host quality, pest fitness, and natural 
enemy efficiency will improve their predictive accuracy 
(Deutsch et al., 2018) [19]. Such climate-adaptive pest 
models, remote sensing, and AI-driven decision support 
could guide real-time IPM decisions in farmers’ fields. 
Finally, a systems-level approach that connects breeding, 
biotechnology, and agroecology is needed. Developing 
stress-resilient cultivars, deploying defence priming 
technologies, and reinforcing biological control must occur 
in tandem, guided by interdisciplinary research linking 
molecular biology, ecology, and climate science. This 
integrated strategy represents the most promising pathway 
to ensure sustainable pest management in the face of 
accelerating climate change. 
 
8. Conclusion 
Climate change is not only altering weather patterns but 
fundamentally reshaping the biochemical foundations of 

insect-plant interactions. Under climate stress, plants 
experience disruptions in primary metabolism, secondary 
defences, and signalling pathways, which diminish their 
resistance to herbivory. In response, insects evolve adaptive 
strategies such as enhanced enzymatic activity, 
detoxification, and sequestration, enabling them to exploit 
weakened hosts. These reciprocal shifts destabilise tri-
trophic interactions, undermining both natural pest 
suppression and pollination that are key pillars of 
agricultural productivity and ecosystem stability. For 
agriculture, this implies that conventional pest management 
approaches may prove increasingly inadequate under 
climate extremes. Addressing this challenge requires a 
multi-pronged strategy: breeding climate-resilient cultivars, 
employing biochemical defence priming, and integrating 
molecular, ecological, and agronomic knowledge within 
holistic IPM frameworks. By aligning molecular biology 
with environmental and agricultural practices, we can 
safeguard food security, sustain biodiversity, and ensure 
resilient agro-ecosystems in the face of accelerating climate 
change. 
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