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Abstract 

Plant growth, development and productivity are significantly impacted by climatic and environmental 

stresses such as heavy metal, salinity, and drought contamination and temperature extremes. These 

stresses disrupt essential physiological processes like photosynthesis, nutrient uptake, and hormonal 

balance, reducing crop yield & quality. Brassinosteroids (BRs), a part of plant steroidal hormones, has 

resulted to modulate stress response, enhance plant resilience. BRs play a role in mitigating these stresses 

through antioxidant defense systems, gene expression regulation, and cellular homeostasis maintenance. 

They are also used in agriculture to improve crop tolerance to these stresses, leading to increased biomass, 

yield and survival rates. However, challenges remain in understanding the molecular interaction and 

potential trade-offs associated with BR application under diverse environmental contexts. Future research 

should focus on optimizing BR-mediated strategies using genomic, transcriptomic, and epigenetic 

approaches. 
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Introduction 

Brassinosteroids (BRs) have shown promise in helping fruit crops survive with abiotic stresses 

(Divi et al., 2009) [16]. Brassinosteroids are immune modulators that promote plant 

development and growth by regulating enzymatic reactions, protein synthesis, and defense 

compounds. They also regulate cellular differentiate, pollen development, fruit ripening, and 

nutrient distribution, promoting better crop yield (Parveena et al., 2020). Brassinosteroids, like 

24-epibrssinolide (EBR), regulate metabolism and improve quality by promoting 

photosynthesis and enzyme activity (Li et al., 2016) [40]. Brassinosteroids protects crops from 

pesticide toxicity. It also stimulates cypermethrin, chlorothalonil, and carbendazim, indicating 

its potential as environmentally friendly, natural substances for reducing pesticide exposure 

risks (Xia et al., 2009) [75]. Brassinosteriods play critical role in various physiological 

processed in plants (Table 1). Plants use physiological and molecular defense systems, such as 

hormones, antioxidant enzymes, signalling pathways, defense-related genes, to adapt the salt 

stress (Anwar et al., 2022) [4]. Fruit crops are important parts of the world’s agricultural system, 

giving populations all over the world access to key nutrients and a source of income (Smith et 

al., 2020) [59]. But a wide range of substances that are abiotic, such as high temperature, drought 

or exceptionally low temperature, and salt are frequently threaten their productivity and quality 

(Mittler, 2006) [45]. These stresses severely impede the yield, growth, and development of fruit 

crops (Fahad et al., 2017) [17]. It is therefore essential to investigate novel approaches to 

improve fruit crops’ resistance to abiotic stress in the context of these difficulties.  

When plants are stressed by drought, brassinosteroids are essential for maintaining water 

balance and osmotic adjustment, which reduces water deficits and increases plant survival 

(Nakashita et al., 2003) [47]. There is a great deal of communication between Brassinosteroids 

and other signaling pathways, including light and hormone. BZR1 regulates signaling elements 

and co-regulates target genes with transcription factors associated with the movement of light 

(Sun et al., 2010) [62].  

The impact of BR has mostly concentrated on one plant attribute or a group of phenotypes. 

For instance, it has been observed that overexpression (OE) of DWF4,  
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which encodes a C-22 hydroxylase, in an ectopic and organ-

specific manner that catalyses a crucial stage in the 

biosynthesis of Brassinosteroids, increases the length of 

inflorescences, size and number of branches, and the quantity 

of seeds produced from plants (Choe et al., 2001) [10]. 

 

Functional dynamics of Brassinosteroids 

Many model plants have been used to study the biosynthesis 

and signaling pathways of BRs, which has significantly 

advanced our knowledge of the ways in which supervise 

biological processes, particularly those associated to the 

growth and development of plants (Choe, S, 2004) [9]. Beyond 

cell elongation and division, BRs control growth promotion, 

xylem differentiation, cell division, photomorphogensis, 

plant reproduction in response to abiotic and biotic stressor 

(Nolan et al., 2019) [48]. BR deficiency or inability in plants 

leads to dwarfism, senescence and delayed flowering, male 

sterlity, de-etiolation in the dark, and low seed germination 

(Clouse, 2015) [14]. Increased crop output and enhanced 

adaptability to stress and the results of over expressing the 

genes in charge of BR biosynthesis, which raises endogenous 

BR levels (Xia et al., 2018) [74]. Brassinosteroids, either 

independently or through hormonal cross-talks, are believed 

to activate the ABA pathway and optimize the machinery for 

stress-responsive transcripts (Ye et al., 2017) [78] or turn on 

antioxidant defence systems (Lima and Lobato 2017) [41]. 

 

Epigenetic regulation: In order to control gene expression 

patterns linked to abiotic stress responses, brassinosteroid 

affect epigenetic alterations such DNA methylation and 

histone modifications. This allows for long-term adaptability 

to stressful situations (Kim et al., 2006) [32].  

 

Modulation of root architecture: By encouraging the 

growth of lateral roots, improving the growth of root hair, and 

modifying the root system’s architecture to maximize the 

efficiency of water and nutrient intake, brassinosteroids affect 

root growth and architecture under abiotic stress (Bajguz & 

Hayat, 2009) [7]. BR receptor’s increased endosomal 

localization and improved signaling imply that the plant’s 

endophytic apparatus controls BR signaling. BR modify gene 

expression prior to alteration in cells or the body, impacting 

complex metabolic processes that regulate cell division and 

differentiation. They modulate processes particular to 

expansion and progress, such as photomorphogenesis, 

cellular expansion, and skotomorphogensis (Clouse and 

Feldmann, 1999) [12].  

 

Mechanisms governing Brassinosteroid regulation in 

plants 

The BR signal transduction pathway is essential for the 

development and growth of plant life. Stress tolerance occurs 

by BRI1- EMS suppressor and Brassinazole resistant (BZR1) 

(BES 1) transcription factors, which are sensed by 

Brassinosteroid Insensitive 1 (BRI 1) receptor kinase (Li et 

al., 2009) [37]. In order to cause BRI 1 Kinase Inhibitor 1 (BKI 

1) to dissociate, exogenously applied BR binds to BRI 1. 

BAK 1 and BRI 1sequential transphosphorylation activates 

BRI 1 and increases BRI 1 Suppressor 1 (BSU1) activity. 

Dephosphorylated BZR1 and BES1 control BR-targeted 

genes, boosting the production of hormones and antioxidant 

enzymes (Takeuchi et al., 1996) [64]. 

BRs and stress tolerance: an interwined mechanism 

Brassinosteroids, plant steroidal hormones, are significant for 

plant physiological functions and stress adaptation (biotic and 

abiotic) (Li et al., 2013) [37]. They control hormones and 

defense enzymes during stress responses, and their molecular 

and physiological mechanisms are discussed (Wei et al., 

2015) [71]. 

 

BRs role in Plant Drought stress 

When plants don’t get enough water, they experience drought 

stress, which slows down plant development and production. 

Numerous physiological functions, including photosynthesis, 

food intake, and hormone balancing, are disturbed (Farooq et 

al., 2012) [19]. Stress cuts down the supplies required by plants 

for their growth and energy, making it harder for them to 

reproduce seeds (Todaka et al., 2015) [66]. Abscisic acid 

accumulation and drought tolerance are related, and 

exogenous BR control may elevate ABA levels and lessen the 

adverse impacts of drought on plants (Wang et al., 2019) [69, 

70]. Research indicates that Brassinosteroids treatment can 

mitigate the long-lived effects of drought on the life of plant. 

For example, Brassica juncea plants show that after 60 days 

of drought stress, decreased growth and photosynthetic rate; 

28-homobrassinolide post-drought treatment boosts 

photosynthetic rate and growth (Fariduddin et al., 2009) [18]. 

Condition of stress in plants cause drawbacks in the above-

ground growth due to interwined positive feedback loops. 

Stomata closure, a system that prevents water loss and 

controls CO2 levels, inhibiting photosynthetic productivity 

and encouraging reactive oxygen species (ROS) formation. 

This impairs photosynthetic apparatus and causes lipids and 

proteins to undergo oxidation (Raza et al., 2023) [54]. 

However, maintaining sufficient CO2 levels has resulted in 

the evolutionary decoupling of CO2 uptake and light 

reactions in CAM plants. Overheating of the leaf tissue, a 

drop in water mass flow, and a reduction in turgor and 

nutrient uptake all have an adverse effect on plant growth and 

photosynthetic activity. Overall, the physiological processes 

that are altered by drought stress result in low production and 

growth restrictions (Farooq et al., 2009) [20]. Exogenous 

substances (BRs) can aid improve plant growth 

circumstances, such as EBr (24-Epibrassinolide), which has 

been proven to enhance the rate of survival of young plants 

during dry spell (Kagale et al., 2007) [30]. Drought stresses 

can activate genes like superoxide dismutase (SOD), which 

transforms O2-into H2O2 and triggers a defence response (Liu 

et al., 2017) [43]. BRs can accelerate the growth of plants by 

cell wall potential, proline content, increasing photosynthetic 

efficiency, soluble and activity of SOD and lowering 

malondialdehyde (MDA) content and leaf electrical 

permeability (Zhang et al., 2008) [81]. Drought-induced 

osmotic stress has the ability to also prevent plants from 

properly absorbing water (Yuan et al., 2010) [79]. Cells 

influence plant physiological activities (Krishna, 2003) [33]. 

The combination of sodium nitroprusside and 24-

epibrassinolide, a NO donor, and 24-epibrassinolide, 

effectively mitigated drought stress in potted kiwifruit 

seedlings, reducing plant biomass, while maintaining normal 

water metabolism (Xia et al., 2022) [73]. 

 

Involvement of BRs on Salt stress 

The usage of BRs hormones has been considered helpful in 

relieving salt pressure. BRs have a various type of protective 

and enhancing impacts on the number and size of plants 

(Khripach et al., 2002). Reduced yield and progress happen 
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by high salt reduced growth and yields are caused by the 

soil’s high salt material, which also impacts plants ion 

balance and water uptake. It prevents photosynthesis and 

messes with the way cell work (Munns et al., 2008) [46]. Plant 

growing on saline substrates faces three interrelated stresses: 

osmotic, salt-specific, and oxidative, which increase the 

degree of damage caused by salt (Figure1). These stresses 

include elevated pH of the root zone; unbalance nutrition, 

reduced root respiration in sodic soils, structural issues, and 

low oxygen content (Garcia et al., 2009). Both annual and 

perennial plants become similarly affected by salinity, first by 

disturbing the balance of osmosis and then by producing the 

effects specific to salt. Annual crops may experience the 

amounts of salt in leaves can grow extremely dangerous in 

just a matter of days or weeks, while perennials typically 

show up months or year after being exposed to salt (Melgar 

et al., 2008) [44]. Plants can either exhibit high susceptibility 

to both osmotic or salt specific stresses, or they can tolerate 

both equally, depending on the species. Plant’s vegetative and 

sexually active stages are impacted by salinity; certain 

species show acceptance to salt during germination while 

other show an intolerance to it in their growth stages 

(Yamaguchi and Blumwald, 2005) [76]. BRs can be used as 

seed treatments, root treatments, or foliar sprays (Feng et al., 

2014) [21]. Proline, a necessary compatible solute, helps 

maintain balance of REDOX; ROS detoxifies, and protects 

structure of protein (Han et al., 2014) [24]. BRs have been 

shown the activity of antoxidant enzymes increases and 

assemblage of proline (Hayat et al., 2010) [26]. The 

significance of BR in stress tolerance, plants that had been 

silenced with SIBRI1, SIBAK and SIDWARF were subjected 

to salt stress. Plants struggling in salty soil given a special 

pre-treatment with BRs grew much better and healthier than 

plants just given plain water (Zhu et al., 2016) [82]. Salt 

suppression germination of seed and seedling growth can be 

lessened by presoaking seeds in NaCl and BRs (Anuradha, 

2001) [3].  

 Utilizing BRs could considerably minimize damage to 

chloroplast and nuclei brought on by salt through the rooting 

media. BRs have a crucial role in regulating the tolerance of 

salt in plants, but not always. EBL can enhance putrescine the 

process to tetraamine spermine (Spm) and triamine 

spermidine (Spd), considerably increasing salt stress 

generally reduces rate of seed germination, even some 

species experience a germination boost at low salt 

concentration when it falls below 150mM, the need as BRs 

diminish, the same EBL concentration may no longer be 

sufficient to trigger the desired plant growth response, 

resulting in hormonal stress intensity dependent biphasic 

effects (SLDB) (Liu et al., 2020) [42]. 

 

Involvement of Brassinosteroids in temperature stress 

management 

 Temperature is the integral environmental part that 

influences the growth of plants, with low temperatures 

producing physiological dysfunction and alteration in the cell 

structure, physiological state, and biochemical metabolism of 

plants (Xi et al., 2013) [72]. Exogenous epibrassinolide (EBR) 

application has been found to adjust their physiological, 

morphological, and biochemical traits to increase their 

resistance to low-temperature stress (Li et al., 2016) [36]. They 

alter cellular metabolism, protein stability, and membrane 

fluidity, especially in both low and high temperatures, 

negatively impact the capacity of plants to grow and develop 

(Wahid et al., 2007) [67]. Chilling and frost-induced freezing 

stress, along with other abiotic stresses, can significantly 

impact the normal metabolism of plants, particularly fruits 

that are tropical or subtropical (Table 2). These fruits have a 

low temperature sensitivity and easy spoil, affecting their 

quality (Fariduddin et al., 2014). BR alleviates chilling stress 

and low temperatures by boosting chlorophyll levels 

preserving photosynthetic activity, triggering gene 

expression, elevating plant hormones, and turning on signal 

transduction pathways (Li et al., 2015) [35]. When treated with 

BR seedling also increased tolerance to chilling stress, 

thereby genes which are responsible for cold stress are 

activate through signal transduction pathways, and defense 

system (Shu et al., 2016) [57]. Low-temperature stress 

typically affects the cell structure, biochemical metabolism, 

physiology, and morphology of plants (Krishna et al., 2017) 
[34]. Low temperature stress can reduce development of plants 

and inhibit photosynthesis (Sui, 2015). High temperature 

negatively impact plant metabolism, growth and 

development (Sun et al., 2019) [91]. 

Plants have evolved extensive and multifaceted regulatory 

systems to safeguard themselves against biotic and abiotic 

dangers (Rehman et al., 2016) [55]. Phytohormones (BR, 

ABA, SA, and GA) fundamentally influence signal 

transduction pathways, which also activate defence 

mechanisms. (Acharya et al., 2009) [1]. BR has been shown to 

control the growth of plant and physiological responses to 

natural stressors like the stress of high temperatures; resulted 

in increased antioxidant enzyme activity and reduced 

glutathione, ascorbate and oxidized glutathione contents (Jin 

et al., 2015) [29]. 

 

Brassinosteriod and heavy metal stress tolerance 

Natural elements of the earth’s crust that are heavy metals are 

absorbed and accumulated by plants (Bajguz, 2010) [6]. High 

concentrations of heavy metals can have harmful effects on 

the metabolic pathways of plants, inhibit vital molecules, 

obstruct the plant’s nutrient and ion transport system, push 

essential ions out of cellular sites, and eliminate or upset the 

balance of antioxidant enzymes (Sharma et al., 2014) [56]. 

Heavy metal-contaminated soils negatively impact crop yield 

and quality, and consumption of these products can lead to 

food chain contamination (Hasan et al., 2019) [25]. High levels 

of dangerous metals in such soil can increase the risks 

associated with consuming these contaminated foods (Wang 

et al., 2019) [69, 70]. 

Cadmium (Cd) is an example of a heavy metal which 

negatively impact plant’s CO2 ability for absorption and 

photosynthetic system (Rajewska et al., 2016) [53]. Under Cd 

stress, application of Epibrassinolide (0.1µM) improves 

Fv/Fm, photosynthetic pigments content, and CO2 

assimilation ability, resulting in considerable increase in 

biomass accumulation (Ahammed et al., 2013) [2]. The 

amount of Cd that is taken up by roots and transferrered to 

the leaves has decreased by exogenous EBR, while HBL 

treatment alleviates the decrease in PDII seedling 

development, photochemistry, and photochemistry caused by 

Cd (Singh and Prasad, 2017) [58]. In Brassica juncea heavy 

metals like nickel promotes the production of several BRs, 

including typhasterol, dolicholide, castasterone and 

epibrassinolide (Kanwar et al., 2012) [31]. It has been 

established that Brassinosteroid protect plants against stress 

caused by heavy metals, improving tolerance to Cd stress, 

photosynthesis, and antioxidant activity. However, regarding 
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metal stress, it is yet unknown if exogenous BR affects 

endogenous BR levels (Choudhary et al., 2012) [11]. 

 
Table 1: Brassinosteroid application at different stages of plant growth and its effect on plants 

 

Crop 
Brassinosteroid 

concentration 

Stage of 

application 
Effects Citation 

Tomato 0.5mg/L Pre-flowering Enhanced fruit quality and yield, increases fruit set 
Zhang et al., (2014) [18] 

Yang et al., (2011) [77] 

Strawberry 0.3mg/L Flowering 
Improved fruit size and color, enhanced stress 

resistance 
Ayub et al., (2018) [5] 

Mango 1mg Pre-flowering 
Increases total no. of flower per inflorescence, pollen 

viability, fruit set level. 
Tepkaew et al., (2022) [65] 

Grape 0.4mg/L Post-harvest Reduced fruit decay, extended storage period Symons et al., (2006) [63] 

Citrus 0.6mg/L Pre-bloom Enhanced flowering, increased fruit set Rahim et al., (2015) [52] 

 
Table 2: Different types of Brassinosteroid effects on stress tolerance in fruit crops 

 

S. No. 
Brassinosteroid 

used 
Fruit Crops 

Type of Abiotic 

stress 
Observed Effects Citations 

1. 28-

Homobrassinolide 

Grape High Temperature Enhanced heat stress tolerance Parada et al., 2022 [49] 

2. Mango High salinity Better water retention, increased leaf area Patel et al., 2024 [50] 

3. 
24-Epibrassinolide 

Pomegranate Chilling stress 
High antioxidant enzymes activities along with 

maintained quality 
Islam et al.,2022 [28] 

4. Banana Chilling tolerance Influence the accumulation pattern of protein Li et al., 2018 [39] 

 

 
 

Fig 1: Different effects of abiotic stress on plant 

 

Conclusion 

In conclusion, a review of salinity, drought, heavy, and 

temperature stresses in plants demonstrates considerable 

negative effects on physiological systems and overall plant 

health. These stresses affect important systems like 

photosynthesis, water and nutrient intake, and hormonal 

balance, resulting in lower growth and output. However, 

current evidence suggests that brassinosteroids (BRs) plays a 

promising role in moderating theses consequences via a 

variety of pathways, including hormonal cross-talk, 

antioxidant defense enhancement, and epigenetic gene 

expression modification. 

Future research should dig deep into how BRs help plants 

handle stresses and how they work with other plant hormone. 

Also, it’s key to find the best ways to use BRs for the most 

gain and least cost, as different plants and places might need 

different plans. It’s a good idea to study how different plants 

can use BRs to make farming stronger. And if we keep 

studying how BRs and plant deal with tough times, we could 

make crops that have lots of these good hormones in them. 

This could help crops grow better when the world gets 

harsher due to weather. In the end, using this BRs info in 

farming will need lots of teamwork. Plant experts, farm 

experts, and farmers will need to work as one to have farms 

that last and stay strong in the years to come.  
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