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Abstract 

A watershed is regarded as the fundamental unit for the planning and execution of conservation and 

resource management initiatives. The first stage in creating efficient watershed management and 

planning strategies is to evaluate the temporal and spatial variations in runoff and soil erosion. Recent 

advancements in hydrological research, computational tools, and modelling approaches have facilitated 

the development of sophisticated simulation models that include GIS for thorough watershed analysis. 

The Soil and Water Assessment Tool (SWAT) semi-distributed model intended to simulate 

hydrological and water quality processes over extended durations at the watershed scale. Finding the 

most sensitive parameters for streamflow aids in lowering uncertainty and increasing model prediction 

accuracy. This study employed the SUFI-2 (Sequential Uncertainty Fitting-2) algorithm of SWAT-CUP 

(SWAT-Calibration and Uncertainty Programme) to conduct a sensitivity analysis of streamflow 

parameters for the Karad sub-basin in Maharashtra, India. The SCS Curve Number for moisture 

condition II (CN2) identified as the most sensitive parameter affecting streamflow among twenty 

examined parameters for the study area. 
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1. Introduction 

Globally, hydrologic models are commonly employed to simulate several hydrologic 

phenomena, including the quantity and quality of streamflow within a basin. Maintaining 

gauging stations to collect water quality and quantity data over an extended duration from 

multiple locations is highly costly, time-consuming, and labor-intensive. Consequently, 

hydrologic models are essential for simulating various hydrologic processes, including 

sediment production, rainfall-runoff conceptualization, and water quantity and quality. Many 

models are available to model long-term patterns of hydrologic processes at both small and 

large watershed areas. SWAT is the most widely utilized tool for modeling the management 

and climate change effects on hydrologic processes at the watershed scale. 

The USDA-ARS created SWAT, a physically based, continuous, deterministic simulation 

model for watershed-scale analysis (Arnold et al., 1998; Neitsch et al., 2005) [7, 15]. The 

model replicates the quantity and quality of surface and groundwater across small watersheds 

to large river basins. The SWAT model has been extensively utilized globally to assess the 

impacts of land use, climate change, and long-term management of water in watersheds. 

Improving model calibration to more accurately simulate water quantity and quality has 

become an important priority for hydrologists. However, due to the large regional variability 

and wide range of input parameters, working with hydrologic models involves a significant 

amount of uncertainty. These uncertainties may lead to decisions that overestimate or 

underestimate hydrologic processes. To improve simulations, it is crucial to accurately 

conduct the sensitivity, calibration and uncertainty analysis of hydrologic models. 

SWAT was developed to help water resource managers in forecasting the effects of land 

management practices on water, sediment, and agricultural chemical outputs. The model has 

been effectively employed by researchers globally for watershed modeling and the 

management of water resources in watersheds with diverse climatic and topographical 

attributes. A comprehensive research of SWAT model applications, calibration, and 

validation has been conducted by numerous researchers (Moriasi et al., 2007; Arnold et al., 
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2012) [14, 6]. SWAT-CUP is a program designed to assess the 

prediction uncertainties associated with the calibration and 

validation outcomes of the SWAT model. The software 

supports various procedures, including SUFI-2 (Abbaspour 

et al., 2007) [4], Generalized Likelihood Uncertainty 

Estimation (GLUE) (Beven and Binley, 1992) [8], Parameter 

Solution (ParaSol) (Griensven and Meixner, 2006) [11], 

Particle Swarm Optimization (PSO) and Markov Chain 

Monte Carlo (MCMC) (Kuczera and Parent, 1998) [13]. 

The SWAT model categorizes watershed hydrology into 

two primary components: i) the land phase of the hydrologic 

cycle, which quantifies water, sediment, nutrient, and 

pesticide loadings to the main channel in each sub-

watershed, and ii) the routing phase, which simulates the 

transport of water, sediments, and other materials to the 

watershed outlet via the channel network. 

The hydrologic cycle, as modeled by SWAT, is predicated 

on the subsequent water balance equation: 

 

 SWt = SW0 + ∑ (Rday − Qsurf − Ea − Wseep − Qgw)t
i=1   

            …(1) 

 

where, SWt is the final soil water content, SW0 is the initial 

soil water content, t is the time in days, Rday is the daily 

precipitation, Qsurf is the daily surface runoff, Ea is the daily 

evapotranspiration (ET), Wseep is the daily water entering the 

vadose zone from the soil profile and Qgw is the daily return 

flow, all units in mm.  

The SWAT model requires calibration of numerous input 

parameters related to streamflow, sediment, and various 

environmental objectives. The sensitivity analysis of the 

Karad sub-basin employed 20 SWAT input parameters 

associated with streamflow. The parameters were derived 

from various previous investigations (Arnold et al., 2012; 

Shi et al., 2013; Khalid et al., 2015; Ali et al., 2014) [6, 16, 12, 

5]. The analysis included a global sensitivity analysis. This 

paper provides a fundamental explanation of the SUFI-2 

Algorithm, along with details on model setup and 

simulation. Additionally, it addresses the output of the 

sensitivity analysis, concentrating on the parameters that 

exhibit significant sensitivity.  

 

2. SUFI-2 algorithm 

In this study, SUFI-2 algorithm, a multisite and semi-

automated global search procedure developed by Abbaspour 

et al. (2004) [2] and Yang et al. (2007) [18], was employed for 

sensitivity analysis. Sensitivity analysis is the process of 

determining the model's most significant influencing factors. 

There are two reasons why sensitivity analysis is crucial: 

first, processes are represented by parameters, and 

sensitivity analysis offers details on the most significant 

processes in the study area. Second, by removing the 

parameters that have been determined to be insensitive, 

sensitivity analysis aids in reducing the total number of 

parameters in the calibration process. Local sensitivity 

analysis and global sensitivity analysis are the two primary 

forms of sensitivity analysis that are typically carried out. In 

local sensitivity analysis, all parameters are kept constant 

while one is changed to see how it affects an objective

function or model output. Since every parameter in the 

global sensitivity analysis is changing, more runs (500-1000 

or more), depending on the process and number of 

parameters are required to observe how each parameter 

affects the objective function. To measure the sensitivity of 

each parameter, global sensitivity analysis employs a 

multiple regression technique: 

 

g = α + ∑ βibi
n
i=1           ….(1) 

 

where, g is value of objective function, α is regression 

constant, and β is coefficient of parameters. Each 

parameter's significance level is then determined using the t-

test. The sensitivities are estimates of the average changes in 

the objective function that occur when each parameter is 

changed while all other parameters remain constant. This 

only offers a limited understanding of the objective 

function's sensitivity to model parameters because it 

provides relative sensitivities based on linear 

approximations. In this study, the more sensitive the 

parameter, the higher the absolute value of the t-statistic and 

the lower the p-value. 

In SUFI-2, the degree to which all uncertainties are 

considered is quantified by a measure known as the p-factor, 

representing the percentage of measured data bracketed by 

the 95% prediction uncertainty (95 PPU). The r-factor 

serves as an additional metric for assessing the reliability of 

calibration and uncertainty analysis, defined as the average 

thickness of the 95 PPU band divided by the standard 

deviation of the measured data. SUFI-2 aims to include the 

majority of the measured data within the narrowest feasible 

uncertainty band. The 95 PPU is derived from the 2.5% and 

97.5% thresholds of the cumulative distribution of an output 

variable, which is generated via Latin hypercube sampling, 

excluding the worst 5% of simulations. The p-factor 

theoretically ranges from 0 to 100%, whereas the r-factor 

ranges from 0 to infinity. A p-factor of 1 and an r-factor of 

zero represent a simulation that precisely corresponds with 

the measured data. 

 

3. Study area description  

The second-largest river system in Peninsular India that 

drains eastward is the Krishna river basin. It encompasses 

large areas of Maharashtra, Karnataka, and Andhra Pradesh 

as well as the Deccan Plateau. The research region, the 

Karad sub-basin, is located in the Satara district of 

Maharashtra and spans 5,425.62 km². It is part of the upper 

Krishna basin. It spans the geographic latitudes of 

17007'24.71"N to 18002'58.55"N and the longitudes of 

73033'10.93"E to 74018'42.20"E. Near Karad, the sub-basin 

drains into the Krishna River. This area's elevation varies 

from 535 to 1,435 meters above mean sea level (MSL). The 

study area's location map is shown in Fig. 1. The average 

annual rainfall in the basin is 1,783 mm, according to an 

analysis of 30 years of rainfall data (1989-2018). The lower 

section receives as little as 800 mm of rainfall annually, 

while the upper watershed recorded the greatest average of 

about 5,000 mm. The tropical climate zone encompasses the 

study region.  
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Fig 1: Location map of study area 

 

4. Model setup and simulation 

The model setup involved several key steps viz., initializing 

the project, automatically delineating the watershed, 

generating land use and land cover (LULC), soil and 

topographic maps, analyzing Hydrologic Response Units 

(HRUs), defining meteorological inputs, preparing input 

tables, modifying input data executing the SWAT 

simulation and finally, interpreting the output results.  

The Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) Global Digital Elevation 

Model (GDEM) provided the DEM for this research. The 

hydrological modeling procedure used this 30-meter 

resolution DEM as a starting point for topography analysis, 

watershed delineation, slope computation, and drainage 

network extraction. Fig. 2 displays the study basin's 

processed DEM map. The DEM used for watershed 

delineation provided the slope data needed for the SWAT 

model. The slopes were divided into five groups based on 

the FAO's recommendations for conservation soil and water: 

0-3%, 3-8%, 8-15%, 15-30%, and >30%. According to the 

findings, the 3-8% slope class constitutes up the majority of 

the watershed, accounting for 28.03% (1520.65 km2) of its 

entire size. Slopes between 8 and 15 percent and more than 

30 percent cover 21.35% (1158.50 km2) and 19.74% 

(1071.04 km2) of the area, respectively. The 0-3% slope 

range has the lowest percentage at 12.39% (671.99 km2), 

while the 15-30% slope group comprises 18.49% (1003.44 

km²). Fig. 3 shows the slope class's spatial distribution 

within the watershed. 

The National Bureau of Soil Survey and Land Use Planning 

(NBSS&LUP), Nagpur, provided the digital soil layer used 

in this study (Fig. 4). Important details on a number of soil 

properties were derived from the digital soil map. An 

attribute table was used to connect the watershed's 

comprehensive soil information to the soil map. At 41.01% 

(2225.14 km2) of the entire watershed, the Lithic 

Ustorthents soil taxonomy is the largest. Type Ustorthents 

occupy 23.60 km² (0.44%), Typic Chromusterts occupy 

1083.13 km² (19.96%), Typic Ustropepts occupy 1062.21 

km² (19.58%), and Udic Rhodustalfs occupy 1031.54 km² 

(19.01%).  

The LULC maps of the research area were created using 

Google Earth Engine (GEE), a cloud-based platform (Fig. 

5). In this study, a supervised image classification method 

was used. Agricultural land accounts to 61.58% of the 

watershed's total area. Other important land use classes are 

water bodies (3.47%), forest (12.36%), built-up areas 

(1.44%), and barren land (21.15%). The majority of the land 

is agriculture, accounting to 3340.70 km² of the watershed's 

total area of 5425.62 km². Following that are barren land 

(1147.44 km2), and forest land (670.87 km2), water bodies 

(188.23 km2). The built-up area is the smallest category, 

comprising 78.38 km2.  

Meteorological information was gathered from the 

Hydrology Data Users Group (HDUG), Nasik. The study's 

meteorological data is divided into categories such as 

maximum and minimum temperature, wind speed, sunlight 

hours, relative humidity, and rainfall. The Central Water 

Commission (CWC), Hyderabad, provided stream discharge 

for the Karad sub-basin. Table 1 shows the data source for 

the study.  
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Table 1: Data source for the study 
 

Sr. No. Data Source Description  

1 DEM https://earthexplorer.usgs.gov ASTER GDEM (30 m resolution) 

2 Soil map 
National Bureau of Soil Survey and Land 

Use Planning, Nagpur 
Soil texture and organic carbon 

3 Land use Land cover  https://earthengine.google.com Landsat 8 image (OLI TIRS, 30 m resolution) 

4 Metrological data Hydrological Data User Group, Nasik 
Daily maximum and minimum temperature, wind speed, solar 

radiation, relative humidity and rainfall 

5 Hydrological data Central Water Commission, Hyderabad Daily streamflow 

 

 
 

Fig 2: DEM map of study area  

 

 
 

Fig 3: Slope map of study area  

 
 

Fig 4: Soil taxonomy of study area  
 

 
 

Fig 5: Land use land cover map of study area 
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When designing the basin representation, ArcSWAT 
(Winchell et al., 2010) [17] allows users define two different 
kinds of thresholds. Sub-watershed boundaries are 
established based on topography using the sub-watershed 
threshold, which is the minimal area needed to initiate 
stream networks. After the sub-watersheds have been 
delineated, the user can either divide the sub-watersheds 
into several HRUs or model a single soil, land use, and 
management plan for each sub-watershed. The one-third 
default threshold area (3622 ha) was chosen for sub-
watershed discretization, yielding 75 sub-watersheds and 
4176 Hydrologic Response Units (HRUs) for the 0% land 
use, 0% soil, and 0% slope class threshold.  
After setting up the model, the streamflow simulation for the 
calibration period was conducted in the Karad sub-basin. 
The calibration periods included daily streamflow data 
spanning about 17 years (1989 to 2005), with the first four 
years (1989-1992) being used for the model warm-up. 
Global sensitivity was used to carry out the optimization 
procedure that represents the sensitivity of the twenty 
SWAT input parameters (Table 2). Five hundred iterations 
of the global sensitivity methods were chosen in order to 
obtain the most sensitive input parameters. The sensitivity 
analysis in this study was conducted using the licensing 
version of SWAT-CUP. By enabling eight simultaneous 
simulation processes at once, SWAT-CUP's parallel 
processing technology accelerated the simulation operations. 
Using Parallel Computing Technology, SWAT-CUP parallel 
processing currently enables SUFI-2 to operate more 
quickly.  
 

5. Sensitivity Analysis  
Twenty hydrological parameters [CN2.mgt (SCS runoff 
curve number for moisture condition II), SOL_AWC.sol 
(Available soil capacity of soil layer (mm/mm of soil)), 
ALPHA_BF.gw (Base flow alpha factor), CH_N2.rte 
(Manning’s coefficient for channel), RCHRG_DP.gw (Deep 
aquifer percolation factor), CH_K2.rte (Effective hydraulic 
conductivity in main channel alluvium (mm/h), 
GW_DELAY.gw (Groundwater delay), HRU_SLP.hru 
(Average slope steepness), GWQMN.gw (Threshold depth 
of water in the shallow aquifer for return flow to occur), 
EPCO.hru (Average slope steepness), SLSUBBSN.hru 
(Average slope length), GW_REVAP.gw (Groundwater 
delay (days)), REVAPMN.gw (Threshold depth of water in 
the shallow aquifer for revap to occur (mm)), SOL_K.sol 
(Saturated hydraulic conductivity (mm/h)), OV_N.hru 

(Manning’s value for overland flow), ESCO.bsn (Plant 
evaporation compensation factor), SURLAG.bsn (Surface 
runoff lag time), SOL_BD.sol (Moist bulk density), 
ALPHA_BF.gw (Base flow alpha factor (days)), 
TLAPS.sub (Temperature laps rate (0C/km))] related to 
runoff were selected to perform the global sensitivity 
analysis as outline in Table 2.  
Fig. 6 displays the final ranking of sensitive parameters 
derived from the SUFI-2 iterations. These parameters were 
then chosen as the starting set for calibration of the model. 
Table 2 shows the comprehensive ranking of streamflow 
sensitivity analysis parameters together with the related t-
statistic and p-value that were found after 500 simulation 
runs in the SWAT-CUP’s SUFI-2 algorithm. 
The results indicated that the parameters affecting surface 
runoff, groundwater recharge, soil moisture, and channel 
processes have significant effects on streamflow simulation, 
based on a global sensitivity analysis performed for the 
Karad sub-basin. While REVAPMN.gw, SOL_K.sol, 
OV_N.hru, and ESCO.bsn demonstrated significant 
sensitivity, parameters like SURLAG.bsn, SOL_BD.sol, 
ALPHA_BF.gw, and TLAPS.sub had little effect on the 
model response. Additionally, the parameters GWQMN.gw, 
EPCO.hru, SLSUBBSN.hru, and GW_REVAP.gw showed 
moderate sensitivity and were involved in 
evapotranspiration and subsurface flow. However, it was 
discovered that the most sensitive parameters influencing 
streamflow control were those related to surface runoff 
(CN2.mgt, CH_N2.rte), soil moisture capacity 
(SOL_AWC.sol), and groundwater interaction 
(ALPHA_BNK.rte, RCHRG_DP.gw). Additionally, 
variables like CH_K2.rte, GW_DELAY.gw, and 
HRU_SLP.hru also had a substantial contribution to changes 
in the simulated discharge. In order to mitigate the model's 
tendency for overestimation and underestimation, 
interdependence between some parameters was also noted, 
where changes in one parameter affected the response of 
others. It was discovered that the most sensitive factor 
affecting streamflow was the SCS Curve Number for 
moisture condition II (CN2).  
The CN2.mgt had a t-stat value of 26.73, which was 
significantly higher than the majority of the parameters. The 
CN2.mgt's P-value was 0.00. The t-stat value for the least 
sensitive parameter, TLAPS.sub, was 0.09, which was 
significantly lower than the values for the other parameters. 
The TLAPS.sub's P-value was 0.93.  

 

Table 2: Streamflow parameters used and their ranking after global sensitivity analysis  
 

Parameter code t-stat P-value Rank Range Definition 

r_CN2.mgt -26.73 0.00 1 -0.20 - 0.20 SCS runoff curve number for moisture condition II 

r_SOL_AWC.sol 4.27 0.00 2 -0.50 - 0.50 Available soil capacity of soil layer (mm/mm of soil) 

v_ALPHA_BNK.rte -3.07 0.00 3 0.0 - 1.0 Base flow alpha factor for bank storage 

v_CH_N2.rte 2.04 0.04 4 0.0 - 0.5 Manning’s coefficient for channel 
v_RCHRG_DP.gw -1.99 0.05 5 0.0 - 1.0 Deep aquifer percolation factor 

v_CH_K2.rte 1.54 0.13 4 0.0 - 150.0 Effective hydraulic conductivity in main channel alluvium (mm/h) 

v_GW_DELAY.gw 1.42 0.16 7 0.0 - 500.0 Groundwater delay (days) 

r_HRU_SLP.hru -1.32 0.19 8 0.0 - 0.2 Average slope steepness 
v_GWQMN.gw -1.23 0.22 9 0 - 5000.0 Threshold depth of water in the shallow aquifer for return flow to occur (mm) 

v_EPCO.hru 1.08 0.28 10 0.01 - 1 Plant evaporation compensation factor 

r_SLSUBBSN.hru 1.06 0.29 11 -0.5 - 0.5 Average slope length 

v_GW_REVAP.gw 0.78 0.44 12 0.0 - 500.0 Groundwater revap coefficient 
v_REVAPMN.gw 0.69 0.49 13 0.0 - 500.0 Threshold depth of water in the shallow aquifer for revap to occur (mm) 

r_SOL_K.sol -0.62 0.53 14 -0.50 - 0.50 Saturated hydraulic conductivity (mm/h) 

r_OV_N.hru -0.61 0.54 15 0.01 - 30 Manning’s value for overland flow 

v_ESCO.bsn 0.59 0.56 16 0.01 - 1 Plant evaporation compensation factor 
v_SURLAG.bsn 0.54 0.59 17 0.0 - 10.0 Surface runoff lag time 

r_SOL_BD.sol 0.36 0.72 18 1.1 - 1.9 Moist bulk density 

v_ALPHA_BF.gw 0.26 0.79 19 0.0 - 1.0 Base flow alpha factor (days) 

v_TLAPS.sub -0.09 0.93 20 -10 - 10 Temperature laps rate (0C/km) 
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Fig 6: Streamflow sensitivity analysis from SWAT-CUP 

 

6. Conclusion 

The sensitivity analysis conducted during the calibration of 

the SWAT model yielded critical insights into the dominant 

hydrological processes influencing runoff generation in the 

study watershed. The SUFI-2 algorithm of SWAT-CUP 

proved successful in performing sensitivity analysis of 

streamflow parameters within the Karad sub-basin. The 

SWAT-CUP parallel processing technology accelerated 

simulation processes by permitting eight simultaneous 

simulation executions. The SCS Curve Number for moisture 

condition II (CN2) emerged as the most sensitive parameter 

affecting streamflow among the twenty parameters 

evaluated for the Karad sub-basin. The results showed that 

the parameters affecting surface runoff, groundwater 

recharge, soil moisture, and channel processes had a 

substantial impact on streamflow modelling. The input 

parameters identified as the five most sensitive parameters 

include CN2.mgt, SOL_AWC.sol, ALPHA_BNK.rte, 

CH_N2.rte, and RCHRG_DP.gw. All sensitive input 

parameters were considered during the calibration and 

validation processes of the watershed modelling prior to the 

model's implementation for any scenario study. These 

parameters are also recommended for application to 

identical geographical distributions in other watersheds.  
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