


ISSN Print: 2617-4693
ISSN Online: 2617-4707
NAAS Rating (2025): 5.29
IJABR 2025; SP-9(12): 1397-1403
www.biochemjournal.com
Received: 02-09-2025
Accepted: 03-10-2025

Walekar AA
Department of Soil Science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

Kasture MC
Department of Soil Science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

More SS
Department of Soil Science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

Thorat TN
Department of Agronomy, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

Dodake SB
Department of Soil Science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

Corresponding Author:
Walekar AA
Department of Soil Science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli, Maharashtra, India

Effect of nitrogen fertilization and soil amendments on nutrient uptake by rice

Walekar AA, Kasture MC, More, SS, Thorat, TN and Dodake SB

DOI: <https://www.doi.org/10.33545/26174693.2025.v9.i12Sq.6726>

Abstract

The experiment was conducted during *Kharif* - 2022 and *Kharif* - 2023 to study the nutrient uptake by rice influenced by nitrogen fertilization and soil amendments in lateritic soil. The experiment was laid out in factorial randomized block design with two factors. The first factor comprised of 100 kg N ha^{-1} through Urea, 100 kg N ha^{-1} through Ammonium Sulphate, 100 kg N ha^{-1} through Calcium Nitrate, 100 kg N ha^{-1} through 16:16:16 (50% Ammonical and 50% Nitrate N), 100 kg N ha^{-1} through Vermicompost and RDN through Konkan Annapurna Briquettes along with control. However, second factor consisting Orthosilicic Acid 0.08% @ 15 kg ha^{-1} , Rice Husk Biochar @ 5 t ha^{-1} and Neem Cake @ 1 t ha^{-1} along with control. The experimental results indicate that, the nitrogen uptake by rice, significantly increased by application of RDN Konkan Annapurna Briquettes along with orthosilicic acid 0.08% @ 15 kg ha^{-1} . The phosphorous and potassium uptake by rice significantly improved by 100 kg nitrogen through 16:16:16 granular fertilizer along with orthosilicic acid 0.08% @ 15 kg ha^{-1} . The silicon and sulphur uptake by rice enhanced significantly by application of 100 kg N through urea along with orthosilicic acid 0.08% @ 15 kg ha^{-1} .

Keywords: Rice, nutrient, uptake, nitrogen, silicon, Biochar, Neem cake

Introduction

As a primary cereal crop, rice (*Oryza sativa* L.) serves as the fundamental dietary staple food for more than 50% of the global population. However, the dual pressures of a surging human population and environmental degradation have placed global food security under significant strain. Consequently, maximizing rice productivity within the constraints of diminishing land and natural resources has become the paramount objective for modern agriculture.

In the context of Indian rice production, nitrogen (N) stands as a primary limiting factor, making its management crucial for crop success. Providing an optimal nitrogen supply is essential for robust plant development, as sub-optimal applications lead to stunted growth and significant yield losses. Nitrogen directly governs the formation of effective tillers and overall grain productivity by influencing key biochemical and physiological pathways. A deficit in this nutrient during critical growth stages restricts dry matter accumulation and interferes with grain filling, resulting in a higher proportion of unfilled grains.

Similarly, phosphorus (P) is a vital macronutrient that follows nitrogen in importance for maximizing yields. Phosphorus is a fundamental component of ATP, fueling essential processes such as photosynthesis, protein synthesis, and nutrient transport (Yuan, 2002)^[3]. Because both excessive and insufficient applications of N and P can negatively impact grain quality and yield, precise nutrient management is imperative. Therefore, determining the ideal application rates for these nutrients is necessary to ensure sustainable, environmentally friendly, and economically viable rice cultivation (Moro *et al.*, 2008)^[4].

Despite the heavy application of chemical fertilizers by farmers, rice systems often suffer from poor nutrient recovery. This inefficiency is largely attributed to nitrogen loss through volatilization and leaching (Zhu and Chen, 2002)^[5]. The rising cost and environmental footprint of these fertilizers necessitate a shift toward more sustainable practices. Utilizing organic inputs like poultry manure and vermicompost can bridge the nutrient gap while restoring soil quality. By promoting an equilibrium between restorative and degenerative soil processes, various soil amendments provide a sustainable alternative that secures both productivity and soil vitality.

As the second most prevalent element in the Earth's crust, silicon (Si) is vital for improving crop yields and providing resistance against both biological and environmental stressors (Jawahar & Vaiyapuri, 2013) [6]. In cereal production, Si is particularly valued for its ability to reduce lodging. By increasing leaf erectness and reinforcing air canals, silicon optimization enhances oxygen delivery to the roots and minimizes water loss via evapotranspiration. Research by Chanchareonsook *et al.* (2002) [7] indicates that combining Si with standard NPK fertilizers boosts tiller production in rice. Furthermore, Jawahar and Vaiyapuri (2013) [6] demonstrated that a specific application of 120 kg ha⁻¹ of Si (via fly ash) alongside 45 kg ha⁻¹ of sulfur significantly improves growth metrics, including plant height, leaf area index, and grain yield, ultimately leading to a higher benefit-cost ratio.

Biochar is a carbon-rich material produced with high temperature through the thermochemical conversion of biomass under low-oxygen conditions, a process known as pyrolysis. Preliminary research suggests that soil amendment with biochar significantly modifies soil physiochemical properties, offering a dual benefit of improved agricultural yields and mitigated greenhouse gas emissions. Specifically, empirical evidence indicates that biochar supplementation elevates soil organic carbon (SOC), the C/N ratio, and ammonium-nitrogen (NH₄⁺) levels, while simultaneously reducing nitrate-nitrogen (NO₃-N) and lowering soil bulk density (Sun *et al.*, 2016) [8]. Zhang *et al.* (2017) noticed that biochar addition increased soil organic carbon, C/N, and NH₄⁺-N and decreased soil bulk density and NO₃-N. Randolph *et al.* (2017) [10] discovered that incorporation of biochar in soil increased soil pH and improved water retention, electrical conductivity, aggregate stability, and micronutrient contents.

Neem seed cake, the solid byproduct of oil extraction from neem seeds, possesses a superior nutrient profile compared to traditional organic sources like sewage sludge or farmyard manure. Specifically, it contains higher concentrations of nitrogen (2-5%), phosphorus (0.5-1.0%), calcium (0.5-3%), magnesium (0.3-1%), and potassium (1-2%) (Radwanski and Wickens, 1981). Beyond its role as a nutrient-dense natural fertilizer, it is recognized for its inherent pesticidal characteristics (Soon and Bottrel, 1994) [12]. This unique combination of fertilizing and protective properties makes it a highly effective and preferred input in sustainable agriculture. Moreover, Parmar (1986) [13] reported that Neem seed cake exhibits the properties of insecticides, nitrification retardation and inhibitor of pesticide degradation. Neem seed cake admixed with urea fertilizer significantly improves efficiency of fertilizer utilization in crop production by radial release of nitrogen to crops (Ketkar, 1983) [14].

In this study, we aimed to determine the effects of different nitrogen fertilizers along with various soil amendments on yield as well as nutrient uptake by rice.

The results of this study helps to establish sustainable cropping system which support crop yield as well as soil fertility.

Material and Methods

The impact of different nitrogen fertilizers along with different soil amendments on yield as well as nutrient

uptake by rice was evaluated in lateritic soils of Konkan region of Maharashtra. The experiment was conducted at Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli. The field experiment consisted of two successive field trial which were conducted at the research farm Department of Soil Science and Agricultural Chemistry, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Dapoli during *Kharif* - 2022 and *Kharif* - 2023, respectively. The experiment was laid out in Randomized Block Design with two factors which comprising 28 treatment combinations. The treatments indicating different nitrogenous fertilizers were applied at recommended dose consisted first factor whereas another comprised from different soil amendments. The details of treatments and notations are described in table 1.

Table 1A: Nitrogen Sources

Symbols	Nitrogen Source
N ₀	Control
N ₁	100 kg N ha ⁻¹ through Urea
N ₂	100 kg N ha ⁻¹ through Ammonium Sulphate
N ₃	100 kg N ha ⁻¹ through Calcium Nitrate
N ₄	100 kg N ha ⁻¹ through 16:16:16 (50% Ammonical and 50% Nitrate N)
N ₅	100 kg N ha ⁻¹ through Vermicompost
N ₆	RDN through Konkan Annapurna Briquettes

Table 1B: Mitigation Sources

Symbols	Mitigation Source
M ₀	Control
M ₁	Orthosilicic Acid 0.08% @ 15 kg ha ⁻¹
M ₂	Rice Husk Biochar @ 5 t ha ⁻¹
M ₃	Neem Cake @ 1 t ha ⁻¹

The 100 kg N ha⁻¹ through different treatments was applied in three splits 40% at the time of transplanting, 40% at tillering stage and 20% at panicle initiation stage of rice; whereas, application of soil amendments was carried out at the time of transplanting. However, 50 kg P ha⁻¹ and 50 kg K ha⁻¹ was applied as basal at the time of transplanting. The vermicompost @ 4 ton ha⁻¹ applied at the time of transplanting of rice.

The Karjat - 3 rice variety selected as test crop grown for one month on nursery bed. The well grown healthy seedlings transplanted at the spacing of 20 x 15 spacing into well puddled soil. The crop was harvested after attaining maturity; grains were threshed, cleaned, sun dried and recorded for weight treatment wise separately. After separation of grains the straw from each plot sun dried and weighted.

The straw and grain samples of rice were collected at harvest stage were oven dried and ground into fine powder. The processed samples were subjected to the analysis of individual nutrient composition viz. nitrogen, phosphorous, potassium, silicon, sulphur as well as micronutrients viz. zinc, copper, iron and manganese. The methods used for plant analysis were described in table 2.

Table 2: Methods used for plant analysis

Sr. No.	Properties	Name of method	Reference
a.	Total nitrogen	Micro-Kjeldahl method	Tandon (1993)
b.	Total phosphorous	Vanadomolybdate yellow colour method	Tandon (1993)
c.	Total potassium	Flame photometry	Tandon (1993)
d.	Total sulphur	Turbidimetric method	Chesnin and Yien (1950)
e.	Total silicon	Rapid micro-determination method	Korndorfer <i>et al.</i> (2001)

a) Nutrient Uptake

For calculating nutrient uptake, dry matter weight was multiplied representative nutrient content in grain. In addition to this similarly nutrient uptake of straw was also calculated.

$$\text{Nutrient Uptake for Macronutrient} = \frac{\text{Nutrient Content (\%)} \times \text{Yield (kg/ha)}}{100}$$

Result and Discussion

Effect on Nitrogen Uptake

Data on nitrogen uptake by rice as influenced by nitrogen sources and mitigation source applications during the years 2022 and 2023 are presented in table 1. The application of nitrogen sources showed a significant effect on nitrogen uptake by rice grain during both the year 2022 and 2023; observed highest (64.74 and 66.97 kg ha⁻¹) under N₆ treatment application indicating RDN through Konkan Annapurna Briquettes. In the year 2022, straw nitrogen uptake ranged from 18.20 to 47.17 kg ha⁻¹, with N₆ (RDN through Konkan Annapurna Briquettes) recorded the highest uptake (47.17 kg ha⁻¹), whereas, during the year 2023, straw uptake observed highest under treatment N₁ (37.05 kg ha⁻¹). The total nitrogen uptake by rice varied significantly under different nitrogen sources. The highest uptake recorded under N₆ treatment comprising RDN through Konkan Annapurna Briquettes (111.90 and 102.48 kg ha⁻¹ during the year 2022 and 2023) for both year of experimentation.

The application of different mitigation sources showed a significant effect on nitrogen uptake by grain, the M₁ treatment consisting of orthosilicic acid @ 0.08% at 15 kg ha⁻¹ recorded significantly superior nitrogen uptake by grain (58.27 and 58.08 kg ha⁻¹) over rest of the mitigation sources during the year 2022 and 2023, respectively. The application of M₁ treatment was found to be significantly superior in nitrogen uptake by straw, recording 40.42 and 31.81 kg ha⁻¹ during the year 2022 and 2023, respectively. The highest total nitrogen uptake (98.69 and 89.89 kg ha⁻¹) by rice was achieved by orthosilicic acid @ 0.08% at 15 kg ha⁻¹ (M₁) and evidenced superior over the rest of the treatments during the year 2022 and 2023, respectively.

The interaction between nitrogen and mitigation sources observed non-significant regarding nitrogen uptake by rice during both the years of experimentation.

The glance look at the data revealed that, the nitrogen uptake was strongly influenced by Konkan Annapurna Briquettes. This is probably due to, the slow and steady supply of nitrogen throughout the crop growth stages through Konkan Annapurna Briquettes which improved the nitrogen content in grain and straw. Similar results were recorded by Darade and Bankar, 2009; Roy *et al.* (2018); Patil *et al.* (2025)^[19, 20, 21]. The enhanced nitrogen uptake of by silica application through orthosilicic acid might be due to synergistic effect between nitrogen and silica (Prakash *et*

al. 2011)^[26]. Similar results were stated by, Deren *et al.* (1994)^[22].

Effect on Phosphorous Uptake

The data presented in table 4 showed that, the phosphorus uptake by rice grain ranged from 4.98 to 9.07 kg ha⁻¹ and 4.85 to 9.18 kg ha⁻¹ during the year 2022 and 2023 due to the application of various nitrogen sources (table 4). The treatment N₄ recorded the significantly highest phosphorus uptake by rice grain (9.07 and 9.18 kg ha⁻¹) during 2022 and 2023 respectively. In case of phosphorous uptake by rice straw the N₄ treatment remained the top-performing treatment (11.67 and 11.57 kg ha⁻¹), was statistically superior over remaining treatments. The total phosphorus uptake by rice showed a marked response to different nitrogen sources with treatment N₄ registering the significantly highest total phosphorus uptake (20.74 and 20.75 kg ha⁻¹) during the year 2022 and 2023.

The phosphorus uptake by grain was significantly influenced by the mitigation sources in both years, 2022 and 2023 (table 4.42). Among the mitigation sources, the application of orthosilicic acid 0.08% @ 15 kg ha⁻¹ (M₁) consistently recorded the highest phosphorus uptake by grain, with values of 7.32 kg ha⁻¹ in 2022 and 7.31 kg ha⁻¹ in 2023. The phosphorus uptake by straw was observed significant and recorded highest with orthosilicic acid 0.08% @ 15 kg ha⁻¹ (M₁), recording 8.44 kg ha⁻¹ in the year 2022 and 8.86 kg ha⁻¹ in the year 2023. Similarly, the highest total uptake was recorded under orthosilicic acid 0.08% @ 15 kg ha⁻¹ (M₁) with values of 15.77 kg ha⁻¹ in the year 2022 and 16.17 kg ha⁻¹ in the year 2023.

The findings confirm the superior effectiveness of N₄ i.e. 16:16:16 N:P₂O₅:K₂O fertilizer in maximizing overall phosphorus uptake in rice when compared to other nitrogen sources. The enhanced phosphorous content in grain and straw due to high supply of phosphorous in soil, was the probable reason behind highest uptake under this treatment. The similar results were quoted by Rao and Shukla, 1999; Mohapatra and Jee, 1993; Islam *et al.* (2011)^[24, 25].

Prakash *et al.* (2011)^[26] reported the highest phosphorous uptake by application of silicate fertilization. The application of orthosilicic acid influenced the yield as well as phosphorous content therefore recorded highest uptake of rice grain and straw.

Effect on Potassium Uptake

The potassium uptake by rice as affected by various nitrogen and mitigation sources during the year 2022 and 2023 is mentioned in table 5. The Grain uptake of potassium by rice showed significant variation in the year 2022 and 2023 and the highest grain uptake (23.68 and 23.43 kg ha⁻¹) was recorded with N₄ treatment application. In the year 2022, the highest straw uptake was observed under N₁ treatment (93.51 kg ha⁻¹), however during the year 2023, N₄ treatment recorded the highest uptake (88.93 kg ha⁻¹) by rice straw. The highest total potassium uptake recorded with N₁

treatment ($116.75 \text{ kg ha}^{-1}$) in the year 2022. Similarly, during 2023, the N_4 treatment had the highest total uptake ($112.36 \text{ kg ha}^{-1}$), which was statistically superior over the remaining treatments.

The grain potassium uptake by rice was influenced by mitigation sources during both the year 2022 and the year 2023. In the year 2022, orthosilicic acid 0.08% @ 15 kg ha^{-1} (M_1) recorded the highest value for grain uptake. Similarly, in the year 2023, significantly highest grain uptake observed with M_1 treatment. The potassium uptake by straw ranged from 68.40 to 76.77 kg ha^{-1} and 59.19 to 68.20 kg ha^{-1} , with orthosilicic acid 0.08% @ 15 kg ha^{-1} (M_1) being significantly superior during 2022 and 2023, respectively. The total potassium uptake was observed significantly highest (97.58 and 87.92 kg ha^{-1}), with orthosilicic acid 0.08% @ 15 kg ha^{-1} (M_1) during the year 2022 and 2023 respectively.

The interaction between nitrogen and mitigation sources was non-significant during both the year of experimentation. The highest potassium uptake was found under 16:16:16 N: P2O5:K2O application, which increased potassium content in soil as well as plant, also reported the similar results; high potassium uptake by higher potassium application. Cuong *et al.* (2017) [2] noticed that application of the silicon increase potassium uptake in the rice. The increased potassium uptake might be due to synergistic effect between applied fertilizers and silicon in the soil system which increases availability of nutrient in the soil

Effect on Sulphur Uptake

Glimpses of data presented in table 6 observed that the sulphur uptake by rice grain was significantly influenced due to the nitrogen sources during the year 2022 and 2023 the grain sulphur uptake recorded highest due to N_1 treatment application. Similarly, the straw sulphur uptake showed a significant response with N_1 treatment application recorded significantly highest uptake during the year 2022, whereas in the year 2023, straw sulphur uptake recorded significantly highest with N_2 treatment application. The total sulphur uptake by rice, varied significantly achieving the significantly highest uptake with N_1 treatment during both year of experimentation.

The sulphur uptake by rice grain was significantly influenced by different mitigation sources during both years of the study. In the year 2022 the application of orthosilicic acid @ 15 kg ha^{-1} (M_1) showed significantly highest value for grain uptake and the similar trend was observed during

2023. In both years, orthosilicic acid 0.08% @ 15 kg ha^{-1} (M_1) recorded significantly higher straw uptake compared to other mitigation sources. The total sulphur uptake by rice showed significant improvement with M_1 treatment application which resulted highest uptake over mitigation sources during the year 2022 and 2023. The interaction effect remained non significance regarding sulphur uptake by grain, straw and total uptake by rice.

The results recorded that, silicon application significantly increased the uptake of sulphur; which is might be due to impact of silicon of physiological activities of rice which enhanced uptake of available nutrients from soil (Singh *et al.* 2006) [1].

Effect on Silicon Uptake

Data regarding the uptake of silicon by rice as affected by nitrogen and mitigation sources application mentioned in table 7. During the year 2022, the highest silicon uptake (66.57 kg ha^{-1}) by grains was observed with the application of N_1 (100 kg N ha^{-1} through urea) during the year 2022, However during the year 2023 the highest grain uptake (57.46 kg ha^{-1}) was seen in the N_6 treatment. The highest uptake by straw was recorded in N_1 treatment indicating 100 kg N ha^{-1} through urea (103.04 and 94.55 kg ha^{-1} during the year 2022 and 2023). The total silicon uptake by rice during the year 2022 was observed highest ($169.61 \text{ kg ha}^{-1}$) by N_1 treatment and recorded superior. Similarly, during 2023, the highest value again found in treatment N_1 ($106.69 \text{ kg ha}^{-1}$).

The mitigation sources significantly influenced grain silicon uptake in both the years of experimentation. The application of orthosilicic acid (M_1) consistently resulted in the highest grain uptake (73.24 kg ha^{-1} in the year 2022 and 66.86 kg ha^{-1} in the year 2023), indicating its superior ability to enhance silicon availability and absorption by rice grains. Similarly, the application of orthosilicic acid 0.08% @ 15 kg ha^{-1} (M_1) recorded the highest straw uptake of $116.49 \text{ kg ha}^{-1}$ in the year 2022 and $105.85 \text{ kg ha}^{-1}$ in the year 2023 as well as highest ($189.73 \text{ kg ha}^{-1}$ and $172.70 \text{ kg ha}^{-1}$) total uptake by rice.

The application of silicon and nitrogen reported synergistic for the content and uptake by the rice plants (Pati *et al.*, 2018) [27]. It was reveals from the previous studies that application of silicon enhances the uptake of the silicon by the rice straw and grain. Increment in the silicon uptake due to silicon application was also reported by Cuong *et al.*, 2017; Pati *et al.*, 2018 and Singh *et al.*, 2006 [2, 27, 1].

Table 3: Effect of different nitrogen and mitigation sources on nitrogen uptake (kg ha^{-1}) by rice

Treatments	2022														
	Grain Uptake					Straw Uptake					Total Uptake				
	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean
N ₀	26.79	38.92	27.49	30.08	30.82	17.05	21.12	16.38	18.24	18.20	43.84	60.04	43.86	48.32	49.02
N ₁	53.98	75.77	45.74	61.60	59.27	36.13	52.83	45.28	42.44	44.17	90.11	128.60	91.02	104.03	103.44
N ₂	34.90	43.07	36.40	34.67	37.26	17.91	30.03	20.55	26.24	23.68	52.80	73.10	56.95	60.91	60.94
N ₃	47.70	68.86	49.33	59.48	56.34	32.81	49.51	33.22	41.95	39.37	80.51	118.37	82.56	101.44	95.72
N ₄	50.82	67.51	55.90	61.11	58.83	31.92	43.32	39.96	33.19	37.10	82.73	110.83	95.86	94.30	95.93
N ₅	33.10	41.21	32.09	38.51	36.23	24.90	28.85	25.16	25.75	26.17	58.00	70.06	57.26	64.26	62.39
N ₆	58.71	72.58	62.06	65.59	64.74	41.42	57.27	41.44	48.54	47.17	100.13	129.85	103.51	114.13	111.90
Mean	43.71	58.27	44.15	50.15	49.07	28.88	40.42	31.71	33.76	33.69	72.59	98.69	75.86	83.91	82.76
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M			
S.E.±	3.58	2.71	7.16	2.44	1.85	4.88	5.00	3.78	10.01						
C.D. @ 5%	10.38	7.85	NS	7.08	5.35	NS	14.52	10.97	NS						
2023															
Treatments	Grain Uptake				Straw Uptake				Total Uptake						

	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean
N ₀	28.82	37.87	32.08	33.83	33.15	16.08	22.75	16.15	19.65	18.66	44.90	60.62	48.23	53.49	51.81
N ₁	62.40	71.94	65.53	61.33	65.30	33.10	41.77	34.58	38.74	37.05	95.50	113.71	100.11	100.07	102.35
N ₂	33.80	46.49	40.67	39.11	40.02	19.41	24.55	20.78	22.75	21.87	53.21	71.04	61.46	61.87	61.89
N ₃	57.01	62.87	57.48	56.85	58.55	28.14	32.37	30.17	31.47	30.54	85.15	95.24	87.65	88.32	89.09
N ₄	53.52	68.00	56.67	55.98	58.55	26.35	36.32	29.94	31.43	31.01	79.88	104.32	86.61	87.42	89.56
N ₅	39.63	48.78	42.19	44.51	43.78	16.87	23.25	23.74	21.96	21.45	56.50	72.03	65.93	66.47	65.23
N ₆	61.86	70.59	63.56	71.87	66.97	31.87	41.69	32.67	35.79	35.51	93.73	112.29	96.23	107.66	102.48
Mean	48.15	58.08	51.17	51.93	52.33	24.55	31.81	26.86	28.83	28.01	72.69	89.89	78.03	80.75	80.34
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M
S.E.±	1.87	1.42	3.75	1.30	0.98	2.60	2.52	1.90	5.03						
C.D. @ 5%	5.43	4.11	NS	3.77	2.85	NS	7.30	5.52	NS						

Table 4: Effect of different nitrogen and mitigation sources on phosphorous uptake (kg ha⁻¹) by rice

2022															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean
N ₀	4.91	5.79	4.38	5.32	5.10	5.52	7.18	6.13	6.48	6.33	10.43	12.97	10.51	11.81	11.43
N ₁	6.58	7.98	5.92	6.52	6.75	9.00	10.31	9.31	8.74	9.34	15.58	18.29	15.23	15.26	16.09
N ₂	4.50	5.51	4.40	5.52	4.98	5.95	6.54	5.62	5.44	5.89	10.45	12.05	10.01	10.96	10.87
N ₃	6.29	7.58	6.08	7.12	6.77	7.58	9.30	7.72	7.33	7.98	13.87	16.88	13.79	14.45	14.75
N ₄	7.79	10.64	8.81	9.06	9.07	11.33	13.07	11.03	11.24	11.67	19.12	23.70	19.84	20.30	20.74
N ₅	4.97	5.94	5.46	5.06	5.36	4.94	5.24	5.08	5.71	5.24	9.91	11.18	10.54	10.78	10.60
N ₆	6.01	7.83	6.63	6.94	6.85	7.84	7.47	7.21	7.42	7.48	13.85	15.30	13.84	14.37	14.34
Mean	5.87	7.32	5.95	6.51	6.41	7.45	8.44	7.44	7.48	7.70	13.32	15.77	13.40	13.99	14.12
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M
S.E.±	0.45	0.34	0.91	0.39	0.30	0.79	0.44	0.33	0.88						
C.D. @ 5%	1.31	0.99	NS	1.14	NS	1.27	0.96	NS							

2023															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean
N ₀	4.55	5.84	4.93	4.76	5.02	5.75	6.59	5.88	6.21	6.11	10.31	12.44	10.81	10.97	11.13
N ₁	6.74	8.04	7.14	7.61	7.39	8.52	9.69	7.64	9.07	8.73	15.27	17.73	14.79	16.68	16.12
N ₂	4.47	5.72	4.74	5.27	5.05	5.62	6.86	6.10	6.38	6.24	10.09	12.58	10.84	11.65	11.29
N ₃	5.93	7.30	6.76	6.63	6.66	7.78	9.00	7.45	7.77	8.00	13.71	16.30	14.20	14.40	14.65
N ₄	8.59	9.84	9.11	9.18	9.18	10.22	14.44	10.17	11.46	11.57	18.81	24.28	19.28	20.64	20.75
N ₅	4.50	5.54	4.37	4.98	4.85	5.11	5.93	4.82	5.85	5.43	9.60	11.47	9.19	10.84	10.27
N ₆	6.00	8.90	6.46	6.99	7.09	8.05	9.53	8.41	8.88	8.71	14.05	18.43	14.87	15.87	15.80
Mean	5.83	7.31	6.22	6.49	6.46	7.29	8.86	7.21	7.95	7.83	13.12	16.17	13.43	14.44	14.29
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M
S.E.±	0.34	0.25	0.67	0.31	0.23	0.61	0.53	0.40	1.05						
C.D. @ 5%	0.98	0.74	NS	0.89	0.67	NS	1.53	1.15	NS						

Table 5: Effect of different nitrogen and mitigation sources on potassium uptake (kg ha⁻¹) by rice

2022															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean	M₀	M₁	M₂	M₃	Mean
N ₀	15.66	16.70	16.21	16.43	16.25	51.28	63.80	63.09	61.07	59.81	66.93	80.50	79.30	77.50	76.06
N ₁	22.23	24.59	22.61	23.54	23.24	90.99	97.14	94.61	91.31	93.51	113.22	121.73	117.21	114.85	116.75
N ₂	16.01	17.72	16.77	17.43	16.98	54.38	60.37	57.18	59.53	57.87	70.39	78.09	73.96	76.96	74.85
N ₃	20.23	22.57	22.07	22.13	21.75	76.94	84.99	77.10	81.08	80.03	97.17	107.55	99.17	103.21	101.77
N ₄	22.61	24.37	23.53	24.19	23.68	82.64	93.05	85.89	93.94	88.88	105.25	117.42	109.42	118.12	112.55
N ₅	15.69	16.71	16.02	16.07	16.12	50.29	55.54	51.05	58.25	53.78	65.98	72.25	67.07	74.32	69.90
N ₆	20.90	23.00	20.68	21.22	21.45	72.31	82.53	70.66	74.63	75.03	93.21	105.54	91.34	95.85	96.48
Mean	19.05	20.81	19.70	20.14	19.92	68.40	76.77	71.37	74.26	72.70	87.45	97.58	91.07	94.40	92.62
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M
S.E.±	0.61	0.46	1.22	2.51	1.90	5.02	2.63	1.99	5.25						
C.D. @ 5%	1.77	NS	NS	7.28	5.51	NS	7.62	5.76	NS						

2023															
Treatments	Grain Uptake														

N ₆	19.26	21.29	19.71	19.86	20.03	60.03	67.57	61.71	61.18	62.62	79.29	88.86	81.42	81.05	82.65
Mean	17.99	19.72	18.58	18.82	18.78	59.19	68.20	61.63	63.15	63.04	77.18	87.92	80.22	81.98	81.82
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M			
S.E. \pm	0.35	0.26	0.69	1.61	1.22	3.22	1.64	1.24	3.28						
C.D. @ 5%	1.00	0.76	NS	4.68	3.53	NS	4.76	3.60	NS						

Table 6: Effect of different nitrogen and mitigation sources on sulphur uptake (kg ha⁻¹) by rice

2022															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean
N ₀	7.91	8.78	8.07	8.34	8.28	2.00	3.07	2.42	2.95	2.61	9.91	11.85	10.49	11.29	10.89
N ₁	11.45	12.65	11.65	12.06	11.95	3.87	4.73	3.48	4.21	4.07	15.32	17.38	15.14	16.27	16.03
N ₂	9.84	10.72	10.13	10.56	10.31	3.59	4.25	3.88	4.15	3.97	13.43	14.97	14.01	14.72	14.28
N ₃	10.52	11.88	10.82	11.14	11.09	2.93	3.70	3.08	3.24	3.23	13.45	15.58	13.90	14.38	14.32
N ₄	10.57	11.67	10.84	11.26	11.09	3.52	4.24	3.66	4.09	3.88	14.10	15.91	14.50	15.35	14.96
N ₅	8.61	9.14	8.69	8.85	8.82	2.77	3.00	2.86	3.02	2.91	11.38	12.14	11.55	11.87	11.73
N ₆	10.40	11.76	10.47	10.81	10.86	3.27	3.75	3.46	3.46	3.49	13.67	15.51	13.94	14.27	14.35
Mean	9.90	10.94	10.10	10.43	10.34	3.14	3.82	3.26	3.59	3.45	13.04	14.76	13.36	14.02	13.79
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M			
S.E. \pm	0.35	0.26	0.70	0.20	0.15	0.41	0.42	0.32	0.83						
C.D. @ 5%	1.01	0.77	NS	0.59	0.45	NS	1.21	0.92	NS						

2023															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean
N ₀	7.45	8.55	7.94	8.23	8.04	2.96	3.42	2.96	3.11	3.11	10.41	11.97	10.90	11.34	11.15
N ₁	11.34	12.41	11.65	11.65	11.77	3.90	4.42	4.19	4.79	4.33	15.24	16.83	15.85	16.44	16.09
N ₂	9.75	10.94	10.26	10.43	10.35	3.94	5.51	4.55	4.77	4.69	13.69	16.45	14.81	15.20	15.04
N ₃	10.85	11.36	11.35	10.87	11.11	3.73	4.26	3.47	4.00	3.87	14.58	15.62	14.82	14.87	14.97
N ₄	10.85	11.70	11.05	11.28	11.22	4.09	4.90	4.25	4.41	4.41	14.95	16.59	15.30	15.69	15.63
N ₅	8.54	9.36	8.82	9.07	8.95	3.01	3.85	3.20	3.90	3.49	11.55	13.20	12.02	12.97	12.44
N ₆	10.54	11.88	10.96	11.61	11.25	4.09	4.54	4.18	4.43	4.31	14.63	16.42	15.14	16.04	15.56
Mean	9.90	10.88	10.29	10.45	10.38	3.67	4.41	3.83	4.20	4.03	13.58	15.30	14.12	14.65	14.41
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M			
S.E. \pm	0.30	0.22	0.60	0.22	0.16	0.44	0.43	0.32	0.85						
C.D. @ 5%	0.86	0.65	NS	0.63	0.48	NS	1.24	0.94	NS						

Table 7: Effect of different nitrogen and mitigation sources on silicon uptake (kg ha⁻¹) by rice

2022															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean
N ₀	44.40	56.02	41.11	40.45	45.50	54.76	86.53	57.28	59.22	64.45	99.16	142.55	98.39	99.68	109.95
N ₁	58.36	83.32	60.51	64.10	66.57	85.38	152.58	82.83	91.37	103.04	143.73	235.90	143.33	155.47	169.61
N ₂	40.26	59.06	48.80	46.34	48.61	57.31	95.18	57.45	61.45	67.85	97.57	154.24	106.25	107.79	116.46
N ₃	53.56	85.25	60.00	54.59	63.35	73.52	136.53	79.85	78.75	92.17	127.08	221.78	139.86	133.34	155.52
N ₄	52.31	81.10	58.91	58.70	62.76	77.46	123.69	79.45	84.83	91.36	129.77	204.79	138.36	143.52	154.11
N ₅	40.44	61.82	46.31	39.50	47.02	55.08	103.93	58.46	59.16	69.16	95.52	165.75	104.77	98.67	116.18
N ₆	62.19	86.13	57.97	54.97	65.31	77.23	116.98	80.51	77.55	88.07	139.42	203.11	138.48	132.52	153.38
Mean	50.22	73.24	53.37	51.24	57.02	68.68	116.49	70.83	73.19	82.30	118.89	189.73	124.21	124.43	139.31
	N	M	N x M	N	M	N x M	N	M	N x M	N	M	N x M			
S.E. \pm	3.16	2.39	6.32	4.03	3.04	8.05	4.49	3.39	8.98						
C.D. @ 5%	9.17	6.93	NS	11.68	8.83	NS	13.03	9.85	NS						

2023															
Treatments	Grain Uptake					Straw Uptake					Total Uptake				
	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean	M ₀	M ₁	M ₂	M ₃	Mean
N ₀	34.99	54.94	37.77	35.42	40.78	59.61	92.93	58.09	55.65	66.57	94.60	147.87	95.86	91.07	107.35
N ₁	49.65	78.84	50.11	50.88	57.37	85.28	122.61	82.71	87.59	94.55	134.93	201.44	132.82	138.47	151.92
N ₂	36.52	48.88	35.23	39.75	40.10	55.31	91.55	60.80	58.71	66.60	91.84	140.43	96.04	98.45	106.69
N ₃	43.76	72.79	50.33	43.15	52.51	80.32	115.88	88.58	85.62	92.60	124.08	188.67	138.91	128.77	145.11
N ₄	48.59	81.29	51.32	44.70	56.47	85.05	113.28	84.89	89.57	93.20	133.65	194.57	136.20	134.27	149.67
N ₅	37.20	55.11	36.44	38.77	41.88	62.21	87.96	58.76	62.17	67.77	99.41	143.06	95.19	100.93	109.65
N ₆	48.81	76.15	55.62	49.24	57.46	78.98	116.72	80.50	75.90	88.03	127.80	192.87	136.12	125.14	145.48
Mean	42.79	66.86	45.26	43.13	49.51	72.40	105.85	73.48	73.60	81.33	115.19	172.70	118.74	116.73	130.84

Conclusion

It is concluded from the data that, the nitrogen uptake by rice, significantly increased by application of RDN Konkan Annapurna Briquettes along with orthosilicic acid 0.08% @ 15 kg ha⁻¹. The phosphorous and potassium uptake by rice significantly improved by 100 kg nitrogen through 16:16:16 granular fertilizer along with orthosilicic acid 0.08% @ 15 kg ha⁻¹. The silicon and sulphur uptake by rice enhanced significantly by application of 100 kg N through urea along with orthosilicic acid 0.08% @ 15 kg ha⁻¹.

References

1. Singh KK, Singh K, Singh R, Singh Y, Singh CS. Response of nitrogen and silicon levels on growth, yield and nutrient uptake of rice (*Oryza sativa* L.). *Oryza*. 2006;43(3):220-223.
2. Cuong XT, Ullah H, Datta A, Hanh CT. Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. *Rice Sci*. 2017;24(5):283-290.
3. Yuan LP. A scientist's perspective on experience with SRI in China for raising the yields of super hybrid rice. In: Assessment of the System of Rice Intensification: Proceedings of an International Conference; 2002; Sanya, China. p. 131-137.
4. Moro BM, Nuhu IR, Watanabe T. Determining optimum rates of mineral fertilizers for economic rice grain yields under the Sawah system in Ghana. *West Afr J Appl Ecol*. 2008;12(1).
5. Zhu ZL, Chen DL. Nitrogen fertilizer use in China: Contributions to food production, impacts on the environment and best management strategies. *Nutr Cycl Agroecosyst*. 2002;63(2):117-127.
6. Jawahar S, Vaiyapuri V. Effect of sulphur and silicon fertilization on yield, nutrient uptake and economics of rice. *Int Res J Chem*. 2013;1:34-40.
7. Chanchareonsook J, Suwannarat C, Thongpae S, Chanchareonsook S, Thinyai P. Effects of chemical fertilizer combined with silicon on yield and nutrient uptake of rice in acid sulfate soil. 2002.
8. Sun AH, Hua X, Ye XS, Zhan HZ, Li YH, Zhu SJ. Effect of biochar on rice growth and yield under water-saving irrigation. 2016.
9. Zhang A, Cheng G, Hussain Q, Zhang M, Feng H, Dyck M, et al. Contrasting effects of straw and straw-derived biochar application on net global warming potential in the Loess Plateau of China. *Field Crops Res*. 2017;205:45-54.
10. Randolph P, Bansode RR, Hassan OA, Rehrha DJ, Ravella R, Reddy MR, et al. Effect of biochars produced from solid organic municipal waste on soil quality parameters. *J Environ Manage*. 2017;192:271-280.
11. Radwanski SA, Wickens GE. Vegetative fallows and potential value of the neem tree (*Azadirachta indica*) in the tropics. *Econ Bot*. 1981;35(4):398-414.
12. Soon LG, Bottrel DG. Neem pesticides in rice: Potentials and limitations. Manila (Philippines): International Rice Research Institute; 1994. p. 75-90.
13. Parmar BS. An overview of neem research and use in India during the years 1983-1986. 1987.
14. Ketkar CM. Crop experiments to increase the efficacy of urea fertilizer nitrogen by neem by-products. In: Proceedings of the 2nd International Neem Conference (INC-83); 1983; Germany. p. 507-518.
15. Tandon HLS, editor. Methods of analysis of soils, plants, water and fertilizers. New Delhi (India): FDCO; 1993.
16. Chesnin L, Yien CH. Turbidimetric determination of available sulphur. *Soil Sci Soc Am Proc*. 1950;15:149-151.
17. Korndorfer GH, Snyder GH, Ulloa M, Powell G, Datnoff LE. Calibration of soil and plant silicon analysis for rice production. *J Plant Nutr*. 2001;24(7):1071-1084.
18. McLaren CA, Crawford MS. *Soil Sci Soc Am J*. 1950;37:309.
19. Darade AB, Bankar KB. Effect of urea-DAP briquettes and zinc levels on nitrogen, phosphorus and potassium uptake and yield of hybrid rice. *Int J Agric Sci*. 2009;5(2):510-512.
20. Roy R, Bajpai RK, Bachkaiya V, Roy CK, Sahu M, Padhi N, et al. Impact of urea briquettes combined with organics on nutrient use efficiency in irrigated rice. *Int J Curr Microbiol Appl Sci*. 2018;7(12):1464-1479.
21. Patil SS, Dodake SB, Kasture MC, More SS. Effect of zinc and boron fortified Konkan Annapurna briquettes on yield, nutrient uptake, nutrient use efficiency and soil properties of brinjal. *J Adv Biol Biotechnol*. 2025;28(6):1519-1521.
22. Deren CW, Datnoff LE, Snyder GH, Martin FG. Silicon content, disease response and yield components of rice genotypes grown on flooded organic Histosols. *Crop Sci*. 1994;34:733-737.
23. Rao CP, Shukla DN. Yield and nutrient uptake of rice (*Oryza sativa*) as influenced by sources and levels of phosphorus and zinc under transplanted conditions. *Indian J Agron*. 1999;44(1):94-98.
24. Mohapatra AK, Jee RC. Response of lowland rice (*Oryza sativa*) to green manuring and phosphatic fertilizer in coastal Orissa. *Indian J Agron*. 1993;38(3):374-377.
25. Islam MSh, Rahman F, Hossain ATMS. Effects of NPK briquette on rice (*Oryza sativa* L.) in tidal flooded ecosystem. *Agriculturists*. 2011;9(1):37-43.
26. Prakash NB, Chandrashekhar N, Mahendra C, Patil SU, Thippeshappa GN, Laane HM. Effect of foliar spray of soluble silicic acid on growth and yield of wetland rice in hilly and coastal soils of Karnataka. *J Plant Nutr*. 2011;34:1883-1893.
27. Pati S, Saha S, Pal B, Saha B, Hazra GC. Soil application of silicon: Effects on yield and phosphorus, zinc and iron nutrition in rice (*Oryza sativa* L.). *J Indian Soc Soil Sci*. 2018;66(3):329-335.
28. Salman D, Morteza S, Dariush Z, Abbas GM, Reza Y, Ehsan GD, et al. Application of nitrogen and silicon rates on lodging-related characteristics of rice (*Oryza sativa* L.) in northern Iran. *J Agric Sci*. 2012;4(6):12.