

ISSN Print: 2617-4693

ISSN Online: 2617-4707

NAAS Rating (2025): 5.29

IJABR 2025; SP-9(12): 1458-1466

www.biochemjournal.com

Received: 05-10-2025

Accepted: 08-09-2025

Laxmi

M.Sc. Scholar, Department of Post-Harvest Management, Pt. KLS, College of Horticulture and Research Station, Rajnandgaon, MGUVV, Drug, Chhattisgarh, India

Dr. Rajeshwari Sahu

Assistant Professor Floriculture and Landscape Architecture CHRS, Arjunda, Balod, Chhattisgarh, India

Dr. MS Paikra

Professor, Department of Fruit Science, MGUVV, Durg, Chhattisgarh, India

Dr. Sangeeta

Assistant Professor, Department of Fruit Science, Pt. KLS, CHRS, Rajnandgaon, Chhattisgarh, India

Dr. Dikeshwar Niahad

Assistant Professor, Department of Agricultural Statistics and Social Science L., Pt. SKS, CARS, Rajnandgaon, Chhattisgarh, India

Prachi Sahu

M.Sc. Scholar, Department of Post-Harvest Management, Pt. KLS, College of Horticulture and Research Station, Rajnandgaon, MGUVV, Durg, Chhattisgarh, India

Gedda Hemalatha

M.Sc. Scholar, Department of Floriculture and Landscaping Pt. KLS, College of Horticulture and Research Station, Rajnandgaon, MGUVV, Durg, Chhattisgarh, India

Corresponding Author:**Laxmi**

M.Sc. Scholar, Department of Post-Harvest Management, Pt. KLS, College of Horticulture and Research Station, Rajnandgaon, MGUVV, Drug, Chhattisgarh, India

To evaluate the physico-chemical characteristics of a blended beverage prepared of beetroot (*Beta vulgaris* L.) along with lime and mint

Laxmi, Rajeshwari Sahu, MS Paikra, Sangeeta, Dikeshwar Niahad, Prachi Sahu and Gedda Hemalatha

DOI: <https://www.doi.org/10.33545/26174693.2025.v9.i12Sq.6751>

Abstract

The present investigation entitled “Evaluation of physico-chemical characteristics of a blended beverage prepared from beetroot (*Beta vulgaris* L.) along with lime and mint” was carried out during 2024-25 at the Post-Harvest Management Laboratory, Department of Fruit Science, Pt. KLS College of Horticulture and Research Station, Rajnandgaon (Chhattisgarh). The study aimed to evaluate the physico-chemical quality of beetroot-based blended beverages during 90 days of storage at 15-day intervals under laboratory conditions. The experiment was conducted using a Completely Randomized Design with seven treatments and three replications. All treatments were standardized at 15 °Brix total soluble solids and 0.3 per cent acidity, while juice concentrations ranged from 20 to 80 per cent. Higher TSS and reducing sugars were observed in T5, maximum ascorbic acid in T6, and highest acidity, total sugars and pigment content in T7.

Keywords: Beetroot beverage, Physico-chemical properties, Lime

Introduction

Beetroot (*Beta vulgaris* L.) is a biennial root crop belonging to the family Chenopodiaceae, now classified under Amaranthaceae. It is grown globally for its enlarged, fleshy taproot, which is widely utilized for both culinary and medicinal purposes. Commonly referred to as beet, red beet, table beet, or garden beet, the crop is distinguished by its characteristic dark red to purplish coloration, distinctive earthy taste, and rich nutritional profile (Yadav *et al.*, 2015) [10]. In India, beetroot cultivation is predominantly concentrated in states such as Haryana, Uttar Pradesh, West Bengal, and Telangana, where suitable agro-climatic conditions favor its growth and productivity (Arulmani *et al.*, 2021).

Beyond its application as a natural colorant, beetroot juice has witnessed increasing global demand as a health-enhancing supplement, particularly within the fitness and sports nutrition industries. Owing to its low calorie content and high concentration of essential nutrients, beetroot serves as a promising raw material for the development of functional beverages and nutraceutical products.

Mint (*Mentha piperita*), belonging to the family Lamiaceae, is another important component recognized for its medicinal and therapeutic properties. It is a rich source of antioxidants and phytonutrients that aid digestive health. The presence of menthol stimulates digestive enzyme activity, while mint leaves exhibit notable antibacterial and anti-inflammatory effects (Kumar *et al.*, 2021) [14].

Lime (*Citrus aurantifolia*), a member of the Rutaceae family, is well known for its abundant vitamin C content and has traditionally been used in the prevention and treatment of scurvy. Its juice and essential oils offer benefits both internally and topically. Lime is rich in flavonoids that help rejuvenate the skin, protect against infections, reduce body odor, and promote overall skin health (Kumar *et al.*, 2021) [14].

Material and methods

Table 1: Experimental Details:

Name of Crop	Beetroot (<i>Beta vulgaris L.</i>)
Experimental Design	Completely Randomized Design (CRD)
Number of Treatments	07
Number of Replications	03 (5 Bottles in each replication)

Table 2: Treatment details

Notation	Treatment Details
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%),TSS 15 °Brix, acidity 0.3%

The present laboratory experiment was carried out during the year 2024-25 at Post Harvest Management laboratory in the Department of Fruit Science, Pt. KLS, College of Horticulture and Research Station, Rajnandgaon (C.G.)

Results

Physical character

Data revealed that the shape of fruits was globular and average weight of fruits was 130.83 g. The average length of fruit and diameter were recorded 6.2 and 5.1 cm, respectively. Weight of peels was 80.97 gm and pulp 658 gm. inedible index were 658.70, and edible index were 90.03, 7.26, 12.10 and 87.89 percent respectively.

Chemical composition

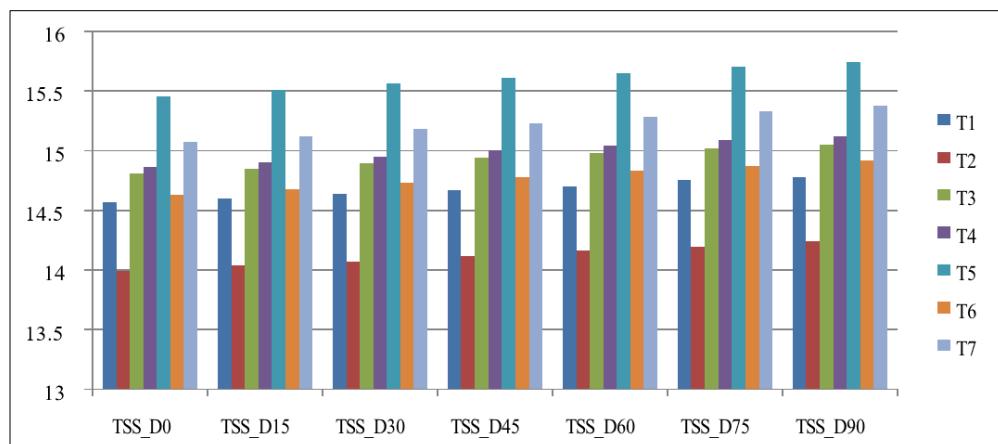
Data presented in Table 1 showed chemical composition of beetroot. The total soluble solid was 6.00 °Brix, acidity was 0.13 percent, Ascorbic acid was recorded 3.55 mg/100ml. The reducing sugar, total sugar and non-reducing sugar

were recorded 4.50, 5.00 and 0.5 percent. The betacyanin and betaxanthin was 3.50 and 1.20 respectively.

Table 1: Physico-chemical composition of beetroot Physical character

Shape of fruit	Globular
Weight of fruit	130.83
Length of fruit	6.2 cm
Diameter of fruit	5.2cm
Weight of peel	80.97gm
Weight of pulp	658.70 gm
Inedible index	641.56
Edible index	90.03

Chemical composition

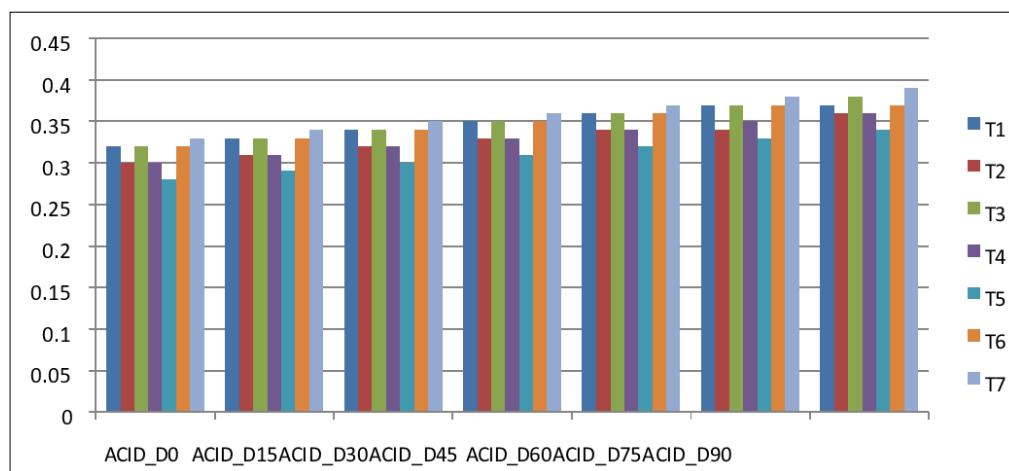

TSS	6.00
Acidity	0.13
Ascorbic acid	3.55
Reducing sugar	4.50
Non reducing sugar	0.5
Total sugar	5.00
Betacyanin	3.50
Betaxanthin	1.20

Total soluble solids (TSS) °Brix

The data presented in Table 2 and Fig. 1 indicated that the Total Soluble Solids (TSS) of beetroot blended beverages with lime and mint increased gradually throughout the storage period from 0 to 90 days across all treatments. At the initial stage (0 day), TSS values varied among treatments, with the highest TSS consistently recorded in T₅ (juice 60%: beetroot 50% + lime 5% + mint 5%), while the lowest values were observed in T₂ (juice 30%). As storage progressed at 15-day intervals, a steady and significant rise in TSS was noted in all treatments, with T₅ maintaining the highest TSS throughout the entire storage period, followed by T₇ and T₆, which remained statistically at par with T₅ at several stages. By the end of 90 days of storage, TSS reached a maximum in T₅, whereas T₂ consistently recorded the minimum TSS. The gradual increase in TSS during storage may be attributed to the conversion of complex carbohydrates and polysaccharides into simpler soluble sugars under storage conditions. Similar trends have also been reported by Kumar (2021) in blended beverages prepared from bottle gourd with lime and mint.

Table 2: Effect on TSS (°Brix) of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0	15	30	45	60	75	90
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	14.57	14.60	14.64	14.67	14.70	14.75	14.78
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	13.99	14.04	14.07	14.12	14.16	14.19	14.24
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	14.81	14.85	14.89	14.94	14.98	15.02	15.05
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	14.86	14.90	14.95	15.00	15.04	15.09	15.12
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	15.45	15.51	15.56	15.61	15.65	15.70	15.74
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	14.63	14.68	14.73	14.78	14.83	14.87	14.92
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	15.07	15.12	15.18	15.23	15.28	15.33	15.38
	CD at 5%	0.786	0.539	0.769	0.840	0.824	0.759	0.762
	SEm ±	0.259	0.178	0.253	0.277	0.272	0.250	0.251
	CV	3.038	2.079	2.953	3.217	3.147	2.892	2.895


Fig 1: Effect on TSS (°Brix) of different recipe treatments of blended beetroot beverage during ambient storage condition**Titratable acidity (%)**

The data presented in Table 3 and Fig. 2 revealed that the titratable acidity of beetroot blended beverage with lime and mint increased significantly with the advancement of storage period from 0 to 90 days under ambient conditions. At the initial stage of storage, acidity values varied among treatments, with the lowest acidity generally recorded in T₅ (juice 60%: beetroot 50% + lime 5% + mint 5%) and the highest in T₇ (juice 80%: beetroot 70% + lime 5% + mint 5%), which remained statistically at par with several other treatments. A gradual and consistent increase in acidity was

observed at each storage interval (15, 30, 45, 60, 75 and 90 days) across all treatments, with T₇ maintaining the highest acidity throughout the storage period, while T₅ or T₂ recorded the lowest values at different stages. By the end of 90 days of storage, maximum acidity was observed in T₇, whereas minimum acidity was recorded in T₂. The progressive increase in acidity during storage may be attributed to the formation of organic acids and biochemical changes occurring in the beverage. Similar results were also reported by Kumar (2021) ^[4] in blended beverages prepared from bottle gourd with lime and mint.

Table 3 Effect on titratable acidity of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0 days	15 days	30 days	45 days	60 days	75 days	90 days
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	0.32	0.33	0.34	0.35	0.36	0.37	0.37
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	0.30	0.31	0.32	0.33	0.34	0.34	0.36
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	0.32	0.33	0.34	0.35	0.36	0.37	0.38
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	0.30	0.31	0.32	0.33	0.34	0.35	0.36
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	0.28	0.29	0.30	0.31	0.32	0.33	0.34
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	0.32	0.33	0.34	0.35	0.36	0.37	0.37
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	0.33	0.34	0.35	0.36	0.37	0.38	0.39
	CD at 5%	0.015	0.013	0.019	0.015	0.015	0.019	0.021
	SEm ±	0.005	0.004	0.006	0.005	0.005	0.006	0.007
	CV	2.811	2.362	3.226	2.486	2.491	3.091	3.172

Fig 2: Effect on titratable acidity of different recipe treatments of blended beetroot beverage during ambient storage condition

Ascorbic acid (mg/100ml)

The data presented in Table.4 and Fig.3 revealed a significant and progressive decline in ascorbic acid content of beetroot blended beverages with lime and mint during ambient storage from 0 to 90 days. At the initial stage of storage, ascorbic acid content varied widely among treatments, with the lowest value recorded in T₁ (juice 20%) and the highest in T₇ (juice 80%), which remained statistically at par with T₆ and T₅. With advancement of storage at successive intervals of 15, 30, 45, 60, 75 and 90 days, a gradual decrease in ascorbic acid was observed in all

treatments, though beverages with higher juice concentration (T₇, T₆ and T₅) consistently retained higher ascorbic acid levels compared to lower juice treatments. By the end of 90 days of storage, maximum ascorbic acid content was still observed in T₇, while the minimum was recorded in T₁. The continuous reduction in ascorbic acid during storage may be attributed to its high sensitivity to oxygen, light and heat, leading to oxidative degradation through enzymatic and non-enzymatic reactions. Similar findings have also been reported by Theba (2023) ^[9] in beetroot blended juice.

Table 4 Effect on ascorbic acid (mg/100ml) of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0 days	15 days	30 days	45 days	60 days	75 days	90 days
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	8.55	7.90	7.20	6.45	5.60	4.85	4.10
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	9.79	9.09	8.35	7.50	6.70	5.84	5.00
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	11.05	10.25	9.39	8.49	7.65	6.70	5.80
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	12.30	11.40	10.45	9.50	8.55	7.50	6.50
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	13.55	12.55	11.50	10.45	9.40	8.30	7.25
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	16.05	14.84	13.60	12.29	11.00	9.69	8.40
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	14.79	13.70	12.55	11.40	10.25	9.05	7.90
	CD at 5%	0.672	0.601	0.542	0.393	0.469	0.174	0.288
	SEm ±	0.222	0.198	0.179	0.129	0.155	0.057	0.095
	CV	3.120	3.011	2.964	2.376	3.172	1.336	2.562

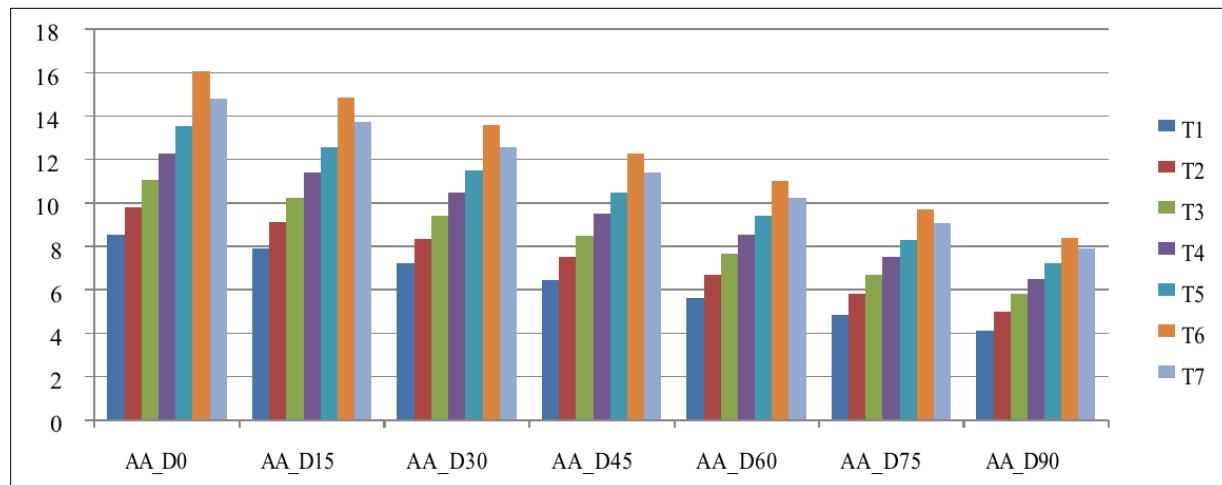
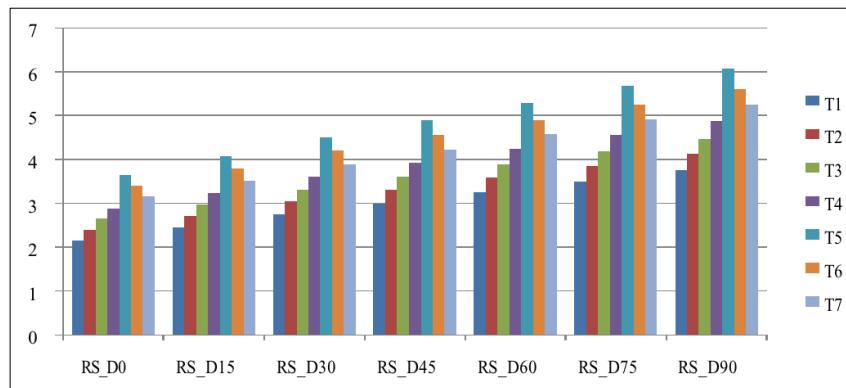


Fig 3: Effect on ascorbic acid (mg/100ml) of different recipe treatments of blended beetroot beverage during ambient storage condition


Reducing sugar (%)

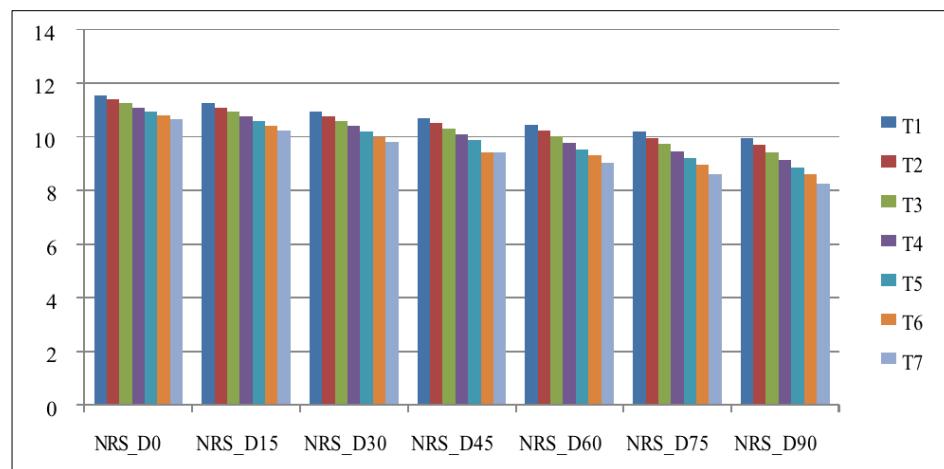
The data presented in Table. 5 and Fig.4 indicated a significant and gradual increase in reducing sugar content of beetroot blended beverages with lime and mint during ambient storage from 0 to 90 days. At the initial stage of storage, reducing sugar content varied among treatments, with the lowest value recorded in T₁ (juice 20%) and the highest in higher juice concentration treatments, particularly T₈ (juice 90%), which remained statistically at par with T₆ and T₇. As storage progressed at successive intervals, a continuous increase in reducing sugars was observed in all treatments, with beverages containing higher

proportions of beetroot juice consistently showing higher reducing sugar levels compared to lower juice treatments. By the end of 90 days of storage, maximum reducing sugar content was observed in T₆, followed by T₇ and T₈, while the minimum value remained in T₁. The gradual increase in reducing sugars during storage may be attributed to the inversion of non-reducing sugars into reducing sugars under the acidic conditions of the beverage. Similar results were reported by Mahnoori (2020) ^[6] in beetroot blended RTS beverage.

Table 5: Effect on reducing sugar (%) of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0 days	15 days	30 days	45 days	60 days	75 days	90 days
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	2.15	2.45	2.75	3.00	3.25	3.50	3.75
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	2.40	2.72	3.04	3.30	3.58	3.85	4.12
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	2.65	2.98	3.31	3.60	3.89	4.18	4.47
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	2.89	3.24	3.60	3.92	4.24	4.55	4.87
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	3.65	4.08	4.51	4.90	5.29	5.68	6.07
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	3.40	3.80	4.20	4.55	4.89	5.24	5.60
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	3.15	3.52	3.89	4.23	4.57	4.91	5.25
	CD at 5%	0.096	0.183	0.139	0.176	0.179	0.274	0.204
	SEm ±	0.032	0.060	0.046	0.058	0.059	0.090	0.067
	CV	1.884	3.216	2.195	2.564	2.401	3.430	2.386

Fig 4: Effect on reducing sugar (%) of different recipe treatments of blended beetroot beverage during ambient storage condition

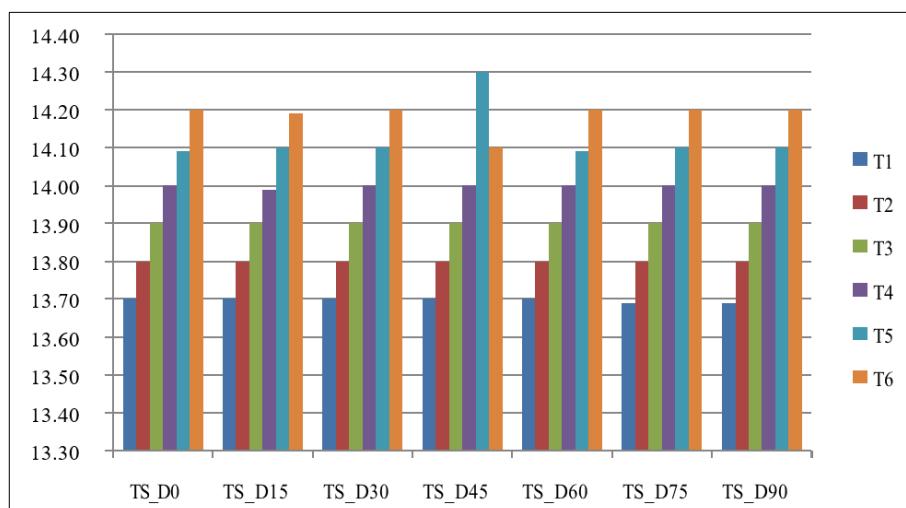

Non reducing sugar (%)

Sugar content of beetroot blended beverages with lime and mint during ambient storage from 0 to 90 days across all treatments. At the initial stage of storage, the highest non-reducing sugar content was recorded in T₁ (juice 20%), while the lowest value was observed in T₇ (juice 80%). With the advancement of storage at successive intervals (15, 30, 45, 60, 75 and 90 days), a gradual decrease in non-reducing sugars was noticed in all treatments, though beverages with lower juice concentration (T₁ and T₂) consistently retained higher

non-reducing sugar levels compared to treatments with higher beetroot juice content. By the end of 90 days of storage, maximum non-reducing sugar content was still recorded in T₁, whereas the minimum value was observed in T₇. The decline in non-reducing sugars during storage may be attributed to the gradual inversion and hydrolysis of non-reducing sugars into reducing sugars under the acidic conditions of the beverage. Similar trends were also reported by Kumar (2021) ^[4] in blended beverages prepared from bottle gourd with lime and mint.

Table 6: Effect on non reducing sugar (%) of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0 days	15 days	30 days	45 days	60 days	75 days	90 days
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	11.54	11.25	10.95	10.70	10.45	10.20	9.95
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	11.40	11.07	10.76	10.49	10.21	9.95	9.68
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	11.25	10.92	10.59	10.30	10.01	9.72	9.43
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	11.10	10.75	10.40	10.08	9.76	9.44	9.12
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	10.94	10.58	10.20	9.87	9.53	9.19	8.85
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	10.80	10.40	10.00	9.64	9.30	8.94	8.60
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	10.65	10.21	9.79	9.40	9.01	8.62	8.23
	CD at 5%	0.636	0.427	0.461	0.374	0.429	0.435	0.377
	SEm) ±	0.210	0.141	0.152	0.123	0.141	0.143	0.124
	CV	3.272	2.270	2.537	2.120	2.512	2.632	2.359


Fig 5: Effect on non reducing sugar (%) of different recipe treatments of blended beetroot beverage during ambient storage condition**Total sugar (%)**

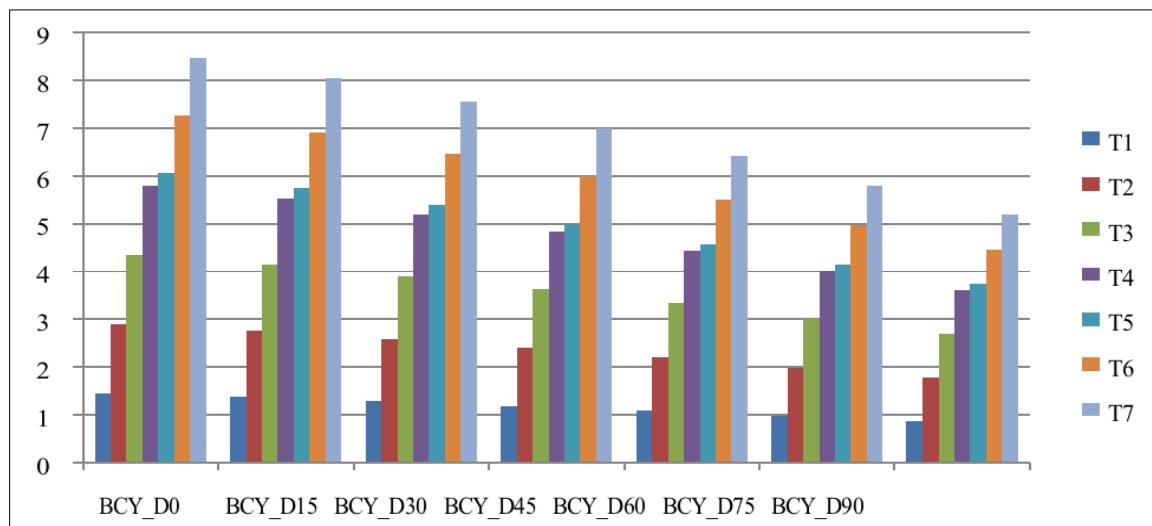
The total sugar content of beetroot blended beverages showed a gradual increase during ambient storage from 0 to 90 days across all treatments. At the beginning of storage, total sugar ranged from 13.70% in T₁ juice (Beetroot 10% + lime 5% + mint 5%) to 14.30% in T₇ juice (Beetroot 70% + lime 5% + mint 5%), with intermediate treatments showing incremental increases corresponding to higher beetroot content. This trend persisted throughout the storage period,

with T₇ consistently recording the highest values and T₁ the lowest, while other treatments remained statistically comparable to each other. By 90 days, total sugar content stabilized, ranging from 13.69% in T₁ to 14.30% in T₇. The observed increase in sugar during storage is likely due to the hydrolysis of polysaccharides, such as starch and pectin, into simpler sugars, a pattern consistent with findings in beetroot blended RTS beverages reported by Mahnoori (2020) [6].

Table 7: Effect on total sugar (%) of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0 days	15 days	30 days	45 days	60 days	75 days	90 days
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	13.70	13.70	13.70	13.70	13.70	13.69	13.69
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	13.80	13.80	13.80	13.80	13.80	13.80	13.80
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	13.90	13.90	13.90	13.90	13.90	13.90	13.90
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	14.00	13.99	14.00	14.00	14.00	14.00	14.00
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	14.09	14.10	14.10	14.10	14.09	14.10	14.10
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	14.20	14.19	14.20	14.20	14.20	14.20	14.20
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	14.30	14.30	14.30	14.29	14.30	14.30	14.30
	CD at 5%	0.678	0.752	0.633	0.477	0.606	0.827	0.625
	SEm) ±	0.224	0.248	0.209	0.157	0.200	0.273	0.206
	CV	2.766	3.065	2.580	1.947	2.473	3.373	2.551

Fig 6: Effect on total sugar (%) of different recipe treatments of blended beetroot beverage during ambient storage condition


Betacyanin

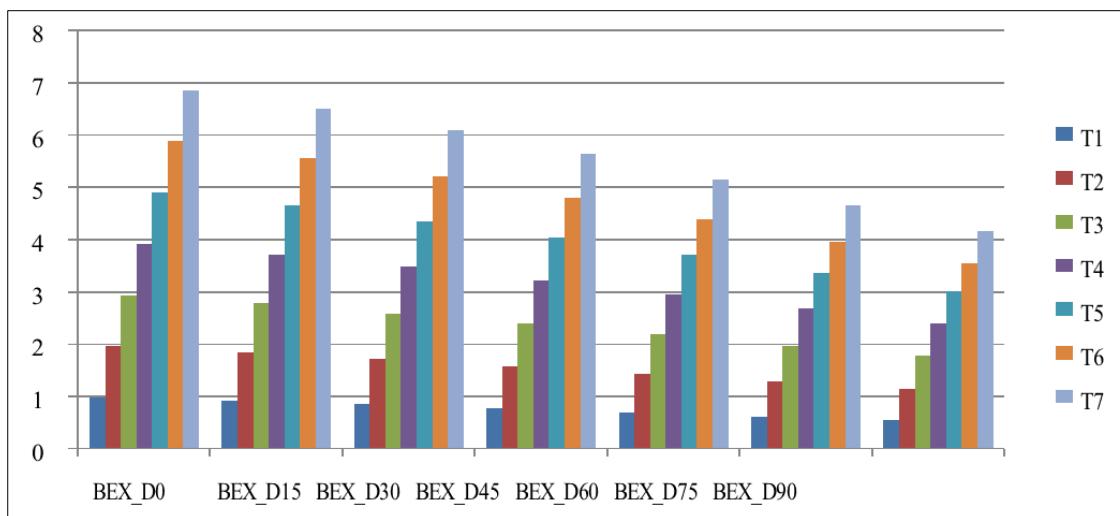
The betacyanin content of beetroot blended beverages with lime and mint showed a gradual decline during ambient storage from 0 to 90 days. At the beginning of storage, betacyanin ranged from 1.45% in T₁ juice (Beetroot 10% + Lime 5% + Mint 5%) to 8.47% in T₇ juice (Beetroot 70% + Lime 5% + Mint 5%), with intermediate treatments exhibiting values proportional to their beetroot content. This decreasing trend persisted throughout storage, with T₇

consistently maintaining the highest betacyanin levels and T₁ the lowest, while other treatments remained statistically comparable. By 90 days, betacyanin content had declined to 0.87% in T₁ and 5.42% in T₇. The reduction in betacyanin over time is attributed to pigment degradation during storage, a pattern consistent with findings in blended beverages of bottle gourd, beetroot, and aloe vera reported by Jalchhatri (2024) [2].

Table 8: Effect on betacyanin of different recipe treatments of blended beetroot beverage during ambient storage condition

Treatment	Recipe composition	Day 0	Day 15	Day 30	Day 45	Day 60	Day 75	Day 90
T ₁	Juice 20% (Beetroot 10% + Lime 5% + Mint 5%)	1.45	1.38	1.29	1.18	1.08	0.97	0.87
T ₂	Juice 30% (Beetroot 20% + Lime 5% + Mint 5%)	2.90	2.76	2.58	2.40	2.19	1.98	1.77
T ₃	Juice 40% (Beetroot 30% + Lime 5% + Mint 5%)	4.35	4.14	3.90	3.63	3.33	3.00	2.70
T ₄	Juice 50% (Beetroot 40% + Lime 5% + Mint 5%)	5.80	5.52	5.19	4.83	4.44	4.02	3.60
T ₅	Juice 60% (Beetroot 50% + Lime 5% + Mint 5%)	6.05	5.75	5.40	5.00	4.57	4.15	3.75
T ₆	Juice 70% (Beetroot 60% + Lime 5% + Mint 5%)	7.26	6.90	6.47	6.00	5.50	4.97	4.45
T ₇	Juice 80% (Beetroot 70% + Lime 5% + Mint 5%)	8.47	8.05	7.55	7.00	6.42	5.80	5.20
CD at 5%	—	0.202	0.322	0.259	0.364	0.207	0.222	0.175
SEm ±	—	0.066	0.106	0.085	0.120	0.068	0.073	0.056
CV (%)	—	2.219	3.736	3.197	2.592	3.003	3.564	3.044

Fig 7: Effect on betacyanin of different recipe treatments of blended beetroot beverage during ambient storage condition


Betaxanthin

The Betaxanthin content of beetroot blended beverages with lime and mint showed a steady decline during storage from 0 to 90 days across all treatments. Initially, Betaxanthin ranged from 0.98% in T₁ juice (Beetroot 10% + Lime 5% + Mint 5%) to 6.86% in T₇ juice (Beetroot 70% + Lime 5% + Mint 5%), with intermediate treatments reflecting proportional beetroot content. This decreasing trend

continued over the storage period, with T₇ consistently maintaining the highest levels and T₁ the lowest, while other treatments were statistically comparable. By 90 days, Betaxanthin content had reduced to 0.54% in T₁ and 4.17% in T₇. The observed decline in Betaxanthin during storage is attributed to pigment degradation, a trend consistent with findings in blended beverages of bottle gourd, beetroot, and aloe vera reported by Jalchhatri (2024) [2].

Table 9: Effect on betaxanthin of different recipe treatments of blended beetroot beverage during ambient storage condition

	Treatments	0 days	15 days	30 days	45 days	60 days	75 days	90 days
T ₁	Juice 20% (Beet root 10% +lime 5% + mint 5%)	0.98	0.92	0.85	0.77	0.69	0.61	0.54
T ₂	Juice 30% (Beet root 20% +lime 5% + mint 5%)	1.96	1.85	1.72	1.57	1.43	1.28	1.14
T ₃	Juice 40% (Beet root 30% +lime 5% + mint 5%)	2.94	2.78	2.59	2.40	2.20	1.97	1.78
T ₄	Juice 50% (Beet root 40% +lime 5% + mint 5%)	3.92	3.7	3.48	3.22	2.95	2.68	2.4
T ₅	Juice 60% (Beet root 50% +lime 5% + mint 5%)	4.90	4.65	4.35	4.05	3.7	3.35	3
T ₆	Juice 70% (Beet root 60% +lime 5% + mint 5%)	5.88	5.55	5.2	4.80	4.40	3.95	3.54
T ₇	Juice 80% (Beet root 70% +lime 5% + mint 5%)	6.86	6.5	6.1	5.65	5.15	4.65	4.17
	CD at 5%	0.183	0.202	0.158	0.199	0.143	0.063	0.046
	SEm) ±	0.06	0.067	0.052	0.066	0.047	0.021	0.015
	CV	2.669	3.11	2.607	3.536	2.793	1.362	1.117

Fig 8: Effect on betaxanthin of different recipe treatments of blended beetroot beverage during ambient storage condition

Conclusion

The present investigation on the physico-chemical evaluation of a blended beverage prepared from beetroot (*Beta vulgaris* L.) along with lime and mint clearly demonstrated that formulation and storage period significantly influenced the quality attributes of the beverage. Among the seven treatments evaluated, while total soluble solids, acidity, and reducing sugars showed an increasing trend. This indicates normal biochemical changes occurring during storage. Treatments with higher juice concentrations exhibited increased nutritional parameters such as total sugars, acidity, and pigments, but excessively high beetroot content negatively affected sensory acceptability.

Overall, the study concludes that a balanced proportion of beetroot, lime, and mint not only enhances sensory appeal but also ensures better physico-chemical stability during storage, making T4 the most suitable, economical, and consumer-preferred formulation for the development of a functional blended beverage.

Importance of this research

This research holds significant importance from nutritional, technological, and commercial perspectives. Beetroot is a rich source of natural pigments, antioxidants, and bioactive compounds, while lime and mint contribute vitamin C, digestive benefits, and refreshing flavor. The successful development of a stable and acceptable beetroot-based blended beverage promotes the utilization of nutrient-dense vegetables in value-added forms, reducing post-harvest losses. The findings provide scientific guidance for standardizing beverage formulations with optimal juice concentration, sweetness, and acidity, which can be adopted by small-scale entrepreneurs, food processing industries, and start-ups focusing on functional and health beverages. Additionally, the study supports the growing consumer demand for natural, non-carbonated, and plant-based functional drinks. From an academic and research standpoint, this work contributes valuable data on physico-chemical changes during storage, which can serve as a reference for future studies on blended beverages, nutraceutical drinks, and post-harvest value addition. Overall, the research promotes sustainable food processing, enhances nutritional security, and opens avenues for commercialization of beetroot-based functional beverages.

Acknowledgements

I take this golden opportunity to express my deepest sense of gratitude to the chairman of my Advisory Committee Dr. Rajeshwari Sahu, Dr. M.S. Paikra, Dr. Sangeeta, Dr. Dikeshwar Niahad and my friend Prachi Sahu, Gedda Hemalatha for her research insight, able guidance, constant encouragement, unique supervision and kind sympathetic attitude, despite her heaviest schedule of work, her patience and creative guidance has given touch of excellence to this manuscript.

References

1. Arulmani R, Sellamuthu KM, Maragatham S, Senthil A, Thamaraiselvi SP, Anandham R, Malathi P, Sridevi G. Yield and quality of beetroot to soil test crop response (STCR)-integrated plant nutrient system (IPNS) based fertilizer prescription in ultisols of Western Ghats of Tamil Nadu, India. Plant Science Today. 2024;11(4):91-97.
2. Jalchhatri B, Verma A. Estimation of betacyanin and betaxanthin content in blended beverage of bottlegourd, beetroot and *Aloe vera*. International Journal of Advanced Biochemistry Research. 2024;8(9):223-227.
3. Kale RG, Sawate AR, Kshirsagar RB, Patil BM, Mane RP. Studies on evaluation of physical and chemical composition of beetroot (*Beta vulgaris* L.). International Journal of Chemical Studies. 2018;6(2):2977-2979.
4. Kumar D, Sharma SP, Thakur L. Studies on recipe standardization and physico-chemical properties of blended beverage of bottle gourd along with lime and mint. The Pharma Innovation Journal. 2021;10(12):202-206.
5. Modgil R, Kaundal S, Sandal A. Effect of blending and storage on the physicochemical composition of the papaya and mango squash. Asian Journal of Dairy and Food Research. 2019;38(2):150-154.
6. Mahnoori S, Singh J, Gupta N. Preparation and evaluation of litchi and beetroot blended ready to serve beverage. The Pharma Innovation Journal. 2020;9(5):33-37.
7. Navya DV, Kukanoor L, Ramachandra Naik K, Kirankumar Gorabal ABS, Jalawadi S. Studies on organoleptic qualities and colour (Lab*) values of

karonda (*Carissa carandas* L.) blended squash during storage. *Journal of Pharmacognosy and Phytochemistry*. 2020;9(6):994-997.

8. Odoh UE, Okoro EC. Quantitative phytochemical, proximate/nutritive composition analysis of *Beta vulgaris* Linnaeus (Chenopodiaceae). *International Journal of Current Research*. 2013;5(12):3723-3728.
9. Theba T, Nayi P, Ravani A. Optimization of a blended juice formulation using beetroot, grape, turmeric, and lemon juices. *Journal of Food Science and Technology*. 2024;61(5):1423-1432.
10. Yadav M, Chawla H, Parle M, Sharma K. Beetroot: A health promoting functional food. *Inventi Rapid: Nutraceuticals*. 2015;(1):1-5.