

ISSN Print: 2617-4693

ISSN Online: 2617-4707

NAAS Rating (2025): 5.29

IJABR 2025; SP-9(12): 970-975

www.biochemjournal.com

Received: 18-10-2025

Accepted: 22-11-2025

Niraj Kumar Prajapati
Department of Horticulture,
SAST, Babasaheb Bhimrao
Ambedkar University,
Lucknow, Uttar Pradesh,
India

Pradip Pandey
Division of Crop Improvement,
ICAR- Indian Institute of
Vegetable Research, Varanasi,
Uttar Pradesh, India

Soumya Pragalva Mohanty
Department of Horticulture,
PG College of Agriculture, Dr.
Rajendra Prasad Central
Agricultural University, Pusa,
Bihar, India

Ratan Kumar Pal
Department of Horticulture,
SAST, Babasaheb Bhimrao
Ambedkar University,
Lucknow, Uttar Pradesh,
India

Dheeraj Kumar Saroj
Department of Horticulture,
SAST, Babasaheb Bhimrao
Ambedkar University,
Lucknow, Uttar Pradesh,
India

Jaswant Prajapati
Department of Vegetable
Science, Punjab Agricultural
University, Ludhiana, Punjab,
India

Sanjay Kumar
Department of Horticulture,
SAST, Babasaheb Bhimrao
Ambedkar University,
Lucknow, Uttar Pradesh,
India

Corresponding Author:
Sanjay Kumar
Department of Horticulture,
SAST, Babasaheb Bhimrao
Ambedkar University,
Lucknow, Uttar Pradesh,
India

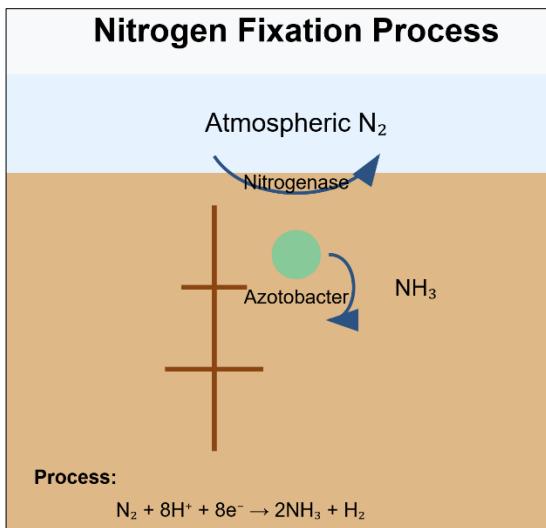
Uncovering the potential of biofertilizers for root vegetable production

Niraj Kumar Prajapati, Pradip Pandey, Soumya Pragalva Mohanty, Ratan Kumar Pal, Dheeraj Kumar Saroj, Jaswant Prajapati and Sanjay Kumar

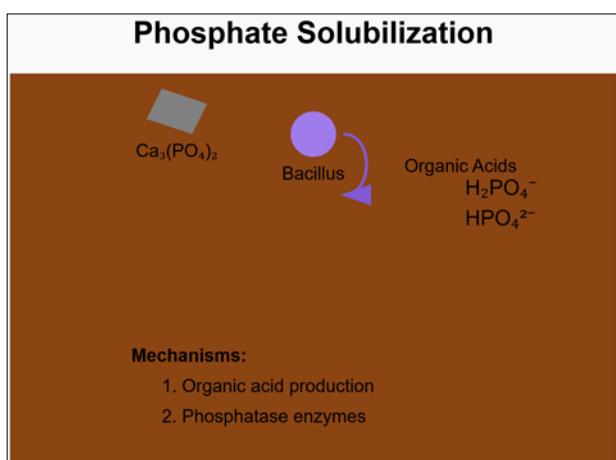
DOI: <https://www.doi.org/10.33545/26174693.2025.v9.i12S1.6646>

Abstract

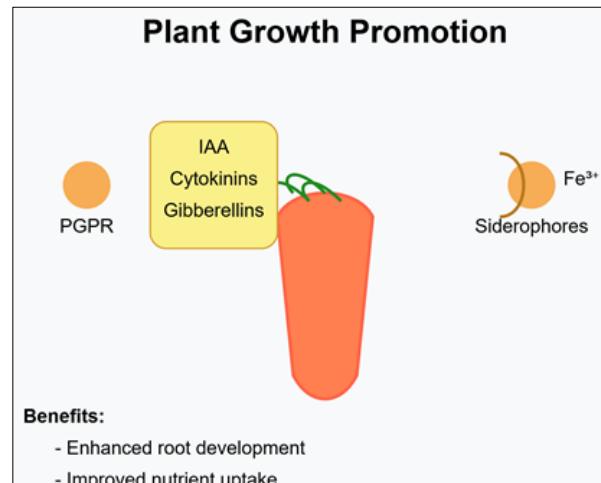
Biofertilizers, consisting of beneficial microorganisms that promote plant growth, have emerged as a promising alternative to synthetic fertilizers in sustainable agriculture. This review aims to study a comprehensive analysis of the effects of biofertilizers on root vegetable cultivation, encompassing aspects such as yield, nutrient uptake, and overall plant health. By synthesizing the findings from numerous studies, this article sheds light on the potential benefits and challenges associated with the use of biofertilizers in root vegetable production. The study highlights the mechanisms through which biofertilizers interact with root vegetables, including nitrogen fixation, phosphate solubilization, and the production of plant growth-promoting substances. Additionally, the article examines the influence of biofertilizers on various root vegetable species, such as carrots, radishes, beets, and potatoes. Furthermore, the review explores the synergistic effects of combining biofertilizers with other agricultural practices, such as organic amendments and crop rotation.


Keywords: Nutrition, symbiosis, synergistic, organic, synthesizer

Introduction


Root vegetables, which are edible plant roots or underground storage organs, play a crucial role in human nutrition and food security worldwide. These crops are valued for their rich nutritional profiles, containing essential vitamins, minerals, and dietary fiber (Rai *et al.*, 2011) [22]. However, intensive agricultural practices involving excessive use of synthetic fertilizers and pesticides have raised concerns about environmental degradation, soil health, and food safety (Jurica *et al.*, 2018) [14]. In response to these challenges, the agricultural sector has increasingly explored sustainable alternatives, including the use of biofertilizers. Biofertilizers are formulations containing living microorganisms that enhance plant growth and yield through various mechanisms, such as nitrogen fixation, phosphate solubilization, and the production of plant growth-promoting substances (Bhardwaj *et al.*, 2014) [6]. These beneficial microorganisms include bacteria (e.g., *Rhizobium*, *Azotobacter*, *Azospirillum*, and *Bacillus*), fungi (e.g., mycorrhizal fungi and *Trichoderma*), and cyanobacteria (e.g., *Anabaena* and *Nostoc*) (Mukherjee *et al.*, 2020) [19]. The application of biofertilizers has gained significant attention due to their potential to improve soil fertility, nutrient availability, and plant growth while minimizing the negative impacts associated with chemical fertilizers (Gulati *et al.*, 2010) [11].

Mechanisms of Action of Biofertilizers in Root Vegetables


Biofertilizers exert their beneficial effects on root vegetables through various mechanisms, including nitrogen fixation, phosphate solubilization, and the production of plant growth-promoting substances. Understanding these mechanisms is crucial for optimizing the application and efficacy of biofertilizers in root vegetable cultivation.

Nitrogen Fixation: Nitrogen is an essential macronutrient for plant growth and development, playing a vital role in the synthesis of amino acids, proteins, and nucleic acids (Shridhar, 2012) [26]. However, most plants cannot directly utilize atmospheric nitrogen, necessitating the conversion of nitrogen into plant-available forms. Certain bacteria, collectively known as diazotrophs, possess the ability to fix atmospheric nitrogen through the nitrogenase enzyme complex (Bhattacharyya and Jha, 2012) [7]. In the context of root vegetables, several diazotrophic bacteria have been explored as biofertilizers, including species from the genera *Azotobacter*, *Azospirillum*, *Rhizobium*, and *Brady Rhizobium* (Gupta *et al.*, 2015) [12]. These bacteria can form symbiotic associations with root vegetables or exist as free-living organisms in the rhizosphere (the region surrounding the plant roots). Through nitrogen fixation, they convert atmospheric nitrogen into ammonia, which can be readily absorbed and utilized by the plants (Bhardwaj *et al.*, 2014) [6]. Studies have demonstrated the positive effects of diazotrophic biofertilizers on root vegetable growth and yield. For example, Kizilkaya (2009) [17] reported that the inoculation of carrot (*Daucus carota*) seeds with *Azotobacter chroococcum* and *Bacillus subtilis* significantly increased root yield, plant biomass, and nitrogen content compared to uninoculated control plants. Similarly, Shafi *et al.* (2017) [23] observed enhanced root yield and nutrient uptake in radish (*Raphanus sativus*) plants treated with *Azospirillum brasiliense* and *Pseudomonas putida* biofertilizers.

Phosphate Solubilization: Phosphorus is another essential macronutrient for plant growth and development, playing critical roles in energy transfer, photosynthesis, and various metabolic processes (Khan *et al.*, 2009) [16]. However, a significant portion of soil phosphorus is present in insoluble forms, rendering it unavailable for plant uptake (Sharma *et al.*, 2013) [25]. Certain microorganisms, known as phosphate-solubilizing microorganisms (PSMs), possess the ability to solubilize insoluble phosphates through the production of organic acids, chelating agents, and phosphatase enzymes (Sharma *et al.*, 2013) [25]. These PSMs include bacteria such as *Bacillus*, *Pseudomonas*, and *Rhizobium*, as well as fungi like *Aspergillus* and *Penicillium* (Alori *et al.*, 2017) [3]. The application of PSM biofertilizers has been shown to improve phosphorus availability and uptake in root vegetables. For instance, Joshi *et al.* (2015) [13] reported that the inoculation of potato (*Solanum tuberosum*) plants with a consortium of phosphate-solubilizing bacteria (*Bacillus megaterium*, *Bacillus polymyxa*, and *Bacillus subtilis*) significantly increased tuber yield, phosphorus uptake, and soil phosphatase activity compared to uninoculated control plants.

3. Production of Plant Growth-Promoting Substances: In addition to nitrogen fixation and phosphate solubilization, biofertilizers can enhance root vegetable growth and yield through the production of various plant growth-promoting substances, such as phytohormones, siderophores, and enzymes (Goswami *et al.*, 2016) [10]. Phytohormones, such as indole-3-acetic acid (IAA), gibberellins, and cytokinins, play crucial roles in regulating plant growth, development, and stress responses (Ahmed and Kibret, 2014) [1]. Certain biofertilizer microorganisms possess the ability to produce these phytohormones, which can stimulate root growth, nutrient uptake, and overall plant vigour (Goswami *et al.*, 2016) [10]. Siderophores are low molecular weight compounds produced by microorganisms to chelate and solubilize iron, making it available for plant uptake (Ahmed and Holmström, 2014) [2]. Biofertilizer microorganisms capable of producing siderophores can enhance iron nutrition in root vegetables, which is essential for various metabolic processes, including chlorophyll synthesis and enzyme activation (Goswami *et al.*, 2016) [10]. Furthermore, biofertilizer microorganisms can produce various enzymes, such as cellulases, pectinases, and proteases, which facilitate the breakdown of complex organic matter, releasing plant-available nutrients (Goswami *et al.*, 2016) [10]. These

enzymes can also help in the degradation of plant residues, improving soil fertility and nutrient cycling. Numerous studies have highlighted the positive effects of plant growth-promoting substances produced by biofertilizers on root vegetable growth and yield. For example, Karthikeyan *et al.* (2020) [15] reported that the application of a biofertilizer consortium consisting of *Pseudomonas fluorescens*, *Bacillus subtilis*, and *Trichoderma viride* significantly improved the growth, yield, and nutrient uptake of carrot plants compared to uninoculated control plants.

Effects of Biofertilizers on Specific Root Vegetable Species

1. Carrots (*Daucus carota*): Carrots are a nutrient-dense root vegetable widely consumed for their high content of carotenoids, particularly beta-carotene, which is a precursor to vitamin A (Arscott and Tanumihardjo, 2010) [4]. Several studies have investigated the effects of biofertilizers on carrot growth and yield. Kizilkaya (2009) [17] reported that the inoculation of carrot seeds with *Azotobacter chroococcum* and *Bacillus subtilis* biofertilizers significantly increased root yield, plant biomass, and nitrogen content compared to uninoculated control plants. Similarly, Sharma *et al.* (2013) [25] observed enhanced carrot growth, yield, and nutrient uptake when plants were treated with a consortium of phosphate-solubilizing bacteria (*Bacillus megaterium*, *Bacillus polymyxa*, and *Bacillus subtilis*). Karthikeyan *et al.* (2020) [15] investigated the effects of a biofertilizer consortium consisting of *Pseudomonas fluorescens*, *Bacillus subtilis*, and *Trichoderma viride* on carrot growth and yield. The results showed a significant increase in root yield, plant biomass, and nutrient uptake compared to the control plants, suggesting the synergistic effects of the biofertilizer consortium.

2. Radishes (*Raphanus sativus*): Radishes are a fast-growing root vegetable known for their pungent flavour and rich nutrient content, including vitamins, minerals, and antioxidants (Lim, 2016) [18]. The application of biofertilizers has demonstrated positive effects on radish growth and yield. Shafi *et al.* (2017) [23] investigated the effects of *Azospirillum brasilense* and *Pseudomonas putida* biofertilizers on radish growth and yield. The results showed that the inoculation with these biofertilizers significantly

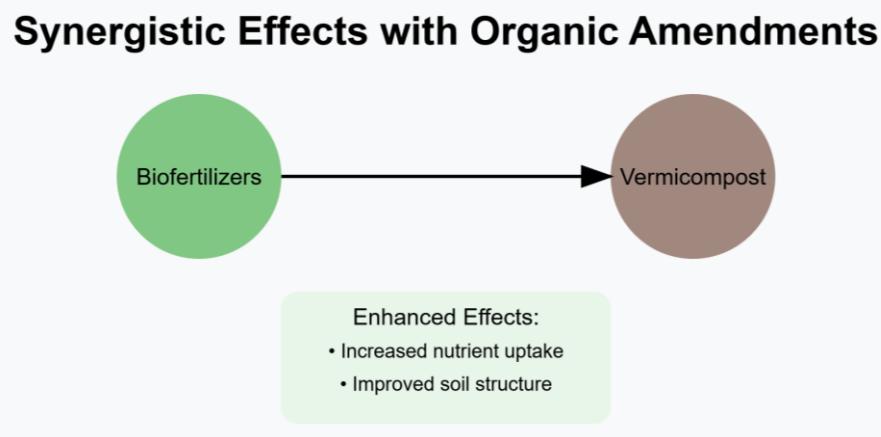
increased root yield, plant biomass, and nutrient uptake compared to uninoculated control plants. In another study, Naher *et al.* (2016) [20] evaluated the performance of a phosphate-solubilizing biofertilizer (*Bacillus megaterium*) on radish growth and yield. The biofertilizer application resulted in improved root yield, plant biomass, and phosphorus uptake, suggesting the potential of phosphate-solubilizing biofertilizers in enhancing radish production.

3. Beets (*Beta vulgaris*): Beets are a root vegetable valued for their rich nutrient content, including folate, manganese, and betalains, which are potent antioxidants (Clifford *et al.*, 2015) [8]. The application of biofertilizers has shown promising results in enhancing beet growth and yield. Sharma *et al.* (2013) [25] investigated the effects of a phosphate-solubilizing biofertilizer (*Bacillus megaterium*) on beet growth and yield. The results showed a significant increase in root yield, plant biomass, and nutrient uptake compared to uninoculated control plants. In another study, Elkhatib *et al.* (2009) [9] evaluated the performance of a biofertilizer consortium consisting of *Azotobacter chroococcum*, *Azospirillum brasilense*, and *Bacillus polymyxa* on beet growth and yield. The biofertilizer application resulted in improved root yield, plant biomass, and nitrogen and phosphorus uptake, highlighting the potential synergistic effects of the biofertilizer consortium.

4. Potatoes (*Solanum tuberosum*): Potatoes are a globally important root vegetable and a staple food for millions of people (Zaheer and Akhtar, 2016) [27]. The application of biofertilizers has shown promising results in enhancing potato growth, yield, and nutrient uptake. Joshi *et al.* (2015) [13] investigated the effects of a consortium of phosphate-solubilizing bacteria (*Bacillus megaterium*, *Bacillus polymyxa*, and *Bacillus subtilis*) on potato growth and yield. The results showed a significant increase in tuber yield, phosphorus uptake, and soil phosphatase activity compared to uninoculated control plants. In another study, Zaheer and Akhtar (2016) [27] evaluated the performance of a biofertilizer consortium consisting of *Azotobacter vinelandii*, *Bacillus subtilis*, and *Pseudomonas putida* on potato growth and yield. The biofertilizer application resulted in improved tuber yield, plant biomass, and nutrient uptake, suggesting the synergistic effects of the biofertilizer consortium.

Synergistic effects of Biofertilizers with other Agricultural practices

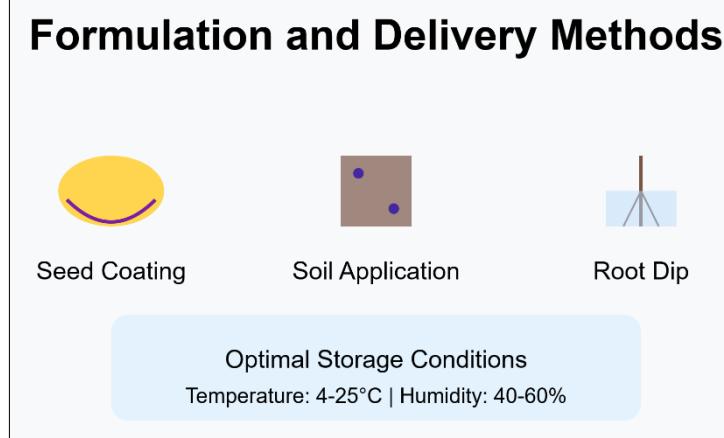
While biofertilizers have demonstrated promising results in improving root vegetable growth and yield, their effectiveness can be further enhanced through synergistic


interactions with other agricultural practices, such as organic amendments and crop rotation.

1. Biofertilizers and Organic Amendments: Organic amendments, such as compost, vermicompost, and animal

manures, are rich sources of organic matter and nutrients that can improve soil fertility and structure (Sharma and Sindhu, 2011) [24]. The combination of biofertilizers and organic amendments has shown synergistic effects in enhancing root vegetable growth and yield. Narayana and Patel (2015) [21] investigated the combined effects of a biofertilizer (*Azospirillum brasiliense*) and vermicompost on carrot growth and yield. The results showed that the combined application of the biofertilizer and vermicompost significantly increased root yield, plant biomass, and nutrient uptake compared to the individual treatments or the control. In another study, Elkhatabi *et al.* (2009) [9] evaluated the performance of a biofertilizer consortium (*Azotobacter chroococcum*, *Azospirillum brasiliense*, and *Bacillus polymyxa*) in combination with compost on beet growth and yield. The combined application of the biofertilizer consortium and compost resulted in improved root yield, plant biomass, and nutrient uptake compared to the individual treatments or the control.

2. Biofertilizers and Crop Rotation: Crop rotation is a agricultural practice in which different crops are grown in a


specific sequence on the same land, with the aim of maintaining soil fertility, reducing pest and disease pressure, and improving overall crop productivity (Sharma and Sindhu, 2011) [24]. The integration of biofertilizers with crop rotation systems can enhance the benefits of both practices. Zaheer and Akhtar (2016) [27] investigated the effects of a biofertilizer consortium (*Azotobacter vinelandii*, *Bacillus subtilis*, and *Pseudomonas putida*) on potato growth and yield in a crop rotation system with legumes. The results showed that the biofertilizer application in combination with crop rotation significantly increased tuber yield, plant biomass, and nutrient uptake compared to the individual treatments or the control. In another study, Joshi *et al.* (2015) [13] evaluated the performance of a phosphate-solubilizing biofertilizer (*Bacillus megaterium*, *Bacillus polymyxa*, and *Bacillus subtilis*) on potato growth and yield in a crop rotation system with cereals. The biofertilizer application in combination with crop rotation resulted in improved tuber yield, phosphorus uptake, and soil phosphatase activity compared to the individual treatments or the control.

Challenges and Future Perspectives

While biofertilizers have demonstrated considerable potential in enhancing root vegetable growth and yield,

there are still challenges and areas that require further research and development.

1. Biofertilizer Formulation and Delivery: One of the challenges in biofertilizer application is the development of effective formulations and delivery methods that ensure the survival and viability of the beneficial microorganisms. Factors such as carrier materials, moisture content, and

storage conditions can significantly impact the efficacy of biofertilizers (Babalola, 2014) [5]. Future research should focus on developing innovative formulations and delivery systems that improve the stability, shelf-life, and efficacy of biofertilizers. This may include the use of encapsulation

technologies, nanotechnology-based delivery systems, or the development of biofertilizer seed coatings or root dips to enhance root colonization and nutrient uptake.

2. Biofertilizer Specificity and Compatibility: Different root vegetable species and cultivars may respond differently to biofertilizer applications, and the compatibility between the biofertilizer microorganisms and the target crop is crucial for achieving optimal results (Goswami *et al.*, 2016) [10]. Additionally, environmental factors such as soil type, pH, temperature, and moisture can influence the efficacy of biofertilizers. Future research should focus on identifying and developing biofertilizer strains or consortia that are specifically tailored to different root vegetable species and cultivars, taking into account their unique nutritional requirements and environmental conditions. This may involve screening and characterizing a diverse collection of microorganisms and evaluating their performance under various field conditions.

3. Integrating Biofertilizers into Sustainable Farming Systems: While biofertilizers offer a promising alternative to synthetic fertilizers, their widespread adoption may

require integration into comprehensive sustainable farming systems that address multiple aspects of agricultural production (Bhardwaj *et al.*, 2014) [6]. This includes practices such as crop rotation, intercropping, cover cropping, and integrated pest management. Future research should explore the synergistic effects of biofertilizers with other sustainable agricultural practices, aiming to develop holistic farming systems that optimize resource use efficiency, enhance soil health, and promote biodiversity while maintaining or improving root vegetable yields.

4. Economic and Regulatory Considerations: The successful commercialization and adoption of biofertilizers in root vegetable production may also depend on economic and regulatory factors (Babalola, 2014) [5]. The development and production of biofertilizers must be cost-effective and economically viable for farmers, particularly in resource-limited settings. Additionally, regulatory frameworks and guidelines for the registration, quality control, and safety assessment of biofertilizers need to be established and harmonized across different regions and countries to ensure product consistency and consumer confidence (Bhardwaj *et al.*, 2014) [6].

Table 1: Effects of biofertilizers on carrot (*Daucus carota*) growth and yield

Biofertilizer (s) Used	Key Findings	References
<i>Azotobacter chroococcum</i> , <i>Bacillus subtilis</i>	Increased root yield, plant biomass, and nitrogen content	Kizilkaya (2009) [17]
<i>Bacillus megaterium</i> , <i>Bacillus polymyxa</i> , <i>Bacillus subtilis</i>	Enhanced growth, yield, and nutrient uptake	Sharma <i>et al.</i> (2013) [25]
<i>Pseudomonas fluorescens</i> , <i>Bacillus subtilis</i> , <i>Trichoderma viride</i>	Increased root yield, plant biomass, and nutrient uptake	Karthikeyan <i>et al.</i> (2020) [15]

Table 2: Effects of biofertilizers on radish (*Raphanus sativus*) growth and yield

Biofertilizer (s) Used	Key Findings	References
<i>Azospirillum brasiliense</i> , <i>Pseudomonas putida</i>	Increased root yield, plant biomass, and nutrient uptake	Shafi <i>et al.</i> (2017) [23]
<i>Bacillus megaterium</i>	Improved root yield, plant biomass, and phosphorus uptake	Naher <i>et al.</i> (2016) [20]

Table 3: Effects of biofertilizers on beet (*Beta vulgaris*) growth and yield

Biofertilizer (s) Used	Key Findings	References
<i>Bacillus megaterium</i>	Increased root yield, plant biomass, and nutrient uptake	Sharma <i>et al.</i> (2013) [25]
<i>Azotobacter chroococcum</i> , <i>Azospirillum brasiliense</i> , <i>Bacillus polymyxa</i>	Improved root yield, plant biomass, nitrogen and phosphorus uptake	Elkhatib <i>et al.</i> (2009) [9]

Table 4: Effects of biofertilizers on potato (*Solanum tuberosum*) growth and yield

Biofertilizer(s) Used	Key Findings	References
<i>Bacillus megaterium</i> , <i>Bacillus polymyxa</i> , <i>Bacillus subtilis</i>	Increased tuber yield, phosphorus uptake, and soil phosphatase activity	Joshi <i>et al.</i> (2015) [13]
<i>Azotobacter vinelandii</i> , <i>Bacillus subtilis</i> , <i>Pseudomonas putida</i>	Improved tuber yield, plant biomass, and nutrient uptake	Zaheer & Akhtar (2016) [27]

Table 5: Synergistic effects of biofertilizers with organic amendments and crop rotation

Biofertilizer (s) Used	Agricultural Practice	Key Findings	References
<i>Azospirillum brasiliense</i>	Vermicompost	Increased root yield, plant biomass, and nutrient uptake	Narayana & Patel (2015) [21]
<i>Azotobacter chroococcum</i> , <i>Azospirillum brasiliense</i> , <i>Bacillus polymyxa</i>	Compost	Improved root yield, plant biomass, and nutrient uptake	Elkhatib <i>et al.</i> (2009) [9]
<i>Azotobacter vinelandii</i> , <i>Bacillus subtilis</i> , <i>Pseudomonas putida</i>	Crop rotation with legumes	Increased tuber yield, plant biomass, and nutrient uptake	Zaheer & Akhtar (2016) [27]
<i>Bacillus megaterium</i> , <i>Bacillus polymyxa</i> , <i>Bacillus subtilis</i>	Crop rotation with cereals	Improved tuber yield, phosphorus uptake, and soil phosphatase activity	Joshi <i>et al.</i> (2015) [13]

Conclusion

The mechanisms through which biofertilizers exert their beneficial effects include nitrogen fixation, phosphate solubilization, and the production of plant growth-promoting substances. These processes enhance nutrient availability, promote root growth, and improve overall plant vigour. While biofertilizers have shown considerable potential, there are still challenges and areas that require further research and development. These include optimizing biofertilizer formulations and delivery methods, identifying crop-specific and environment-compatible biofertilizer strains or consortia, integrating biofertilizers into sustainable farming systems, and addressing economic and regulatory considerations. As the demand for sustainable and environmentally friendly agricultural practices continues to grow, biofertilizers offer a promising alternative to synthetic fertilizers in root vegetable production. Their integration into comprehensive sustainable farming systems, coupled with ongoing research and development efforts, can contribute to enhancing food security, promoting soil health, and reducing the environmental impact of agricultural practices.

References

1. Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. *J King Saud Univ Sci.* 2014;26(1):1-20.
2. Ahmed E, Holmström SJ. Siderophores in environmental research: roles and applications. *Microbiol Res.* 2014;169(7-8):303-320.
3. Alori ET, Glick BR, Babalola OO. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. *Front Microbiol.* 2017;8:971.
4. Arscott SA, Tanumihardjo SA. Carrots of many colours provide basic nutrition and bioavailable phytochemicals acting as a functional food. *Compr Rev Food Sci Food Saf.* 2010;9(2):223-239.
5. Babalola OO. Beneficial bacteria of agricultural importance. *Biotechnol Lett.* 2014;36(8):1551-1561.
6. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N. Biofertilizers function as key players in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. *Microb Cell Fact.* 2014;13(1):1-10.
7. Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. *World J Microbiol Biotechnol.* 2012;28(4):1327-1350.
8. Clifford T, Howatson G, West DJ, Stevenson EJ. The potential benefits of red beetroot supplementation in health and disease. *Nutrients.* 2015;7(4):2801-2822.
9. Elkhatib HA, Elkhatib EA, Khalaf Allah AM, El-Sharkawy AM. Drinking detoxicated drainage water on yield, water use efficiency and some metabolites of beet plant fertilized by biofertilizers. *World J Agric Sci.* 2009;5(3):271-279.
10. Goswami D, Thakker JN, Dhandhukia PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. *Cogent Food Agric.* 2016;2(1):1127500.
11. Gulati A, Vyas P, Rahi P, Kasana RC. Plant growth-promoting and rhizosphere-competent *Acinetobacter rhizosphaerae* strain BIHB 723 from the cold deserts of the Himalayas. *Curr Microbiol.* 2010;58(4):371-377.
12. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. *J Microb Biochem Technol.* 2015;7(2):96-102.
13. Joshi R, Singh J, Vig AP, Hu TC, Mall TP. Phosphate solubilizing bacteria: biotechnological applications. *J Agric Res Dev.* 2015;5(1):68-72.
14. Jurica K, Dangoumau J, Millet F, Steffl D, Costa A, Girard F. Synthetic fertilizers and public health: how to make these complementary tools sustainable? *Curr Opin Green Sustain Chem.* 2018;13:118-124.
15. Karthikeyan B, Joe MM, Islam MR, Sa T. Effect of biofertilizers and organic manures on the growth, yield, nutrient uptake and soil fertility of carrot. *J Plant Nutr.* 2020;43(15):2199-2211.
16. Khan MS, Zaidi A, Wani PA. Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. *Sustain Agric.* 2009;551-570.
17. Kizilkaya R. Nitrogen fixation capacity of *Azotobacter* spp. and the effect of soil management on nitrogen fixing bacteria. *Turk J Agric For.* 2009;33(1):25-34.
18. Lim TK. *Raphanus sativus*. In: *Edible medicinal and non-medicinal plants*. Dordrecht: Springer; 2016. p. 299-323.
19. Mukherjee P, Mitra A, Roy M. Harnessing PGPR biomolecules for improved plant resilience. *Adv PGPR Res.* 2020:301-319.
20. Naher UA, Othman R, Panhwar QA, Ismail MR, Berahim Z. Exopolysaccharide production by *Bacillus cereus* and *Bacillus megaterium* for mustard plant growth promotion. *Bulg J Agric Sci.* 2016;22(5):724-730.
21. Narayana S, Patel H. Impact of biofertilizers and vermicompost on growth and yield of carrot. *J Root Crops.* 2015;41(2):22-25.
22. Rai N, Das L, Das B. Exploring underutilized root and tuber crops for food, nutrition and environmental sustainability in disadvantaged areas of the Indian Himalayas. *Int J Sustain Dev World Ecol.* 2011;18(5):392-400.
23. Shafi J, Tiyyagura HR, Prasad S, Shoukath Banu M. Biofertilizers enhance nutrient uptake and growth of radish (*Raphanus sativus* L.) plants. *Bangladesh J Bot.* 2017;46(3):779-784.
24. Sharma AK, Sindhu SS. Biofertilizers: nutrient supply and plant growth. In: *Biotechnology for sustainable agriculture: emerging concepts and eco-friendly applications*. 2011. p. 273-315.
25. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA. Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. *SpringerPlus.* 2013;2(1):1-14.
26. Shridhar BS. Review: nitrogen fixing microorganisms. *Int J Microbiol Res.* 2012;3(1):46-52.
27. Zaheer K, Akhtar MH. Potato production, usage, and nutrition: a review. *Crit Rev Food Sci Nutr.* 2016;56(5):711-721.