

ISSN Print: 2617-4693
 ISSN Online: 2617-4707
 NAAS Rating (2025): 5.29
 IJABR 2025; 9(12): 975-980
www.biochemjournal.com
 Received: 16-10-2025
 Accepted: 19-11-2025

CD Chavda
 Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India

JB Kathiriya
 Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India

DB Barad
 Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India

BB Java
 Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India

SN Ghodasara
 Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India

Corresponding Author:
CD Chavda
 Department of Veterinary Microbiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India

Molecular detection of major coagulase-positive *Staphylococcus* isolates from the canine otitis externa

CD Chavda, JB Kathiriya, DB Barad, BB Java and SN Ghodasara

DOI: <https://www.doi.org/10.33545/26174693.2025.v9.i121.6699>

Abstract

Canine otitis externa (COE) represents one of the most frequently diagnosed inflammatory diseases in dogs, with coagulase-positive staphylococci (CoPS) serving as major etiological agents. This study investigated the prevalence and molecular characterization of CoPS isolated from different breeds of dogs presenting with clinical otitis externa. A total of 87 ear swabs were collected, yielding 53 *Staphylococcus* isolates after primary staining. Of these, 47 (88.7%) tested positive for coagulase production using the tube coagulase test. All coagulase-positive isolates were confirmed as belonging to the genus *Staphylococcus* by 16S rRNA gene-targeted PCR. Species-level identification was performed using species-specific thermonuclease (nuc) gene PCR assays targeting *S. pseudintermedius* (*Pse-nuc*), *S. aureus* (*Au-nuc*) and *S. schleiferi* subsp. *coagulans* (*Sch-nuc*). *S. pseudintermedius* was the predominant species (67.92%, 36/53 isolates), followed by *S. aureus* (15.09%, 8/53), *S. schleiferi* subsp. *coagulans* (5.66%, 3/53) and coagulase-negative or unidentified *Staphylococcus* spp. (11.3%, 6/53). These results underscore the dominance of *S. pseudintermedius* among coagulase-positive staphylococci associated with COE.

Keywords: COE, CoPS, *S. pseudintermedius*, *S. aureus*, *S. schleiferi* subsp. *coagulans*, nuc gene, 16S rRNA

Introduction

Canine otitis externa (COE) refers to inflammation of the external auditory canal, which can also involve the ear pinna. It can present as either acute or chronic, with the chronic form defined as persistent or recurring inflammation lasting three months or more. (Huang *et al.*, 2009) ^[1]. The canal is lined by stratified squamous epithelium similar to skin, containing hair follicles, sebaceous glands and ceruminous (modified apocrine) glands, and it harbours a resident microbiota; these features show considerable inter-breed variation, which represents a major predisposing factor (Miller *et al.*, 2012; Njaa *et al.*, 2012) ^[2, 3]. The prevalence in the general dog population is estimated to be between 8.7% and 20% (Saridomichelakis *et al.*, 2007; Topală *et al.*, 2007) ^[4, 5]. Clinically, it manifests as pruritus, erythema, oedema and otic discharge, frequently accompanied by pain and malodour. Affected dogs typically exhibit behavioural changes, including frequent head shaking, vigorous ear scratching and rubbing of the ears on surrounding objects or surfaces (Summers *et al.*, 2019) ^[6]. Early and precise diagnosis combined with targeted therapy is critical to achieve resolution, alleviate discomfort and minimize the risk of chronicity or recurrence. Otitis externa remains a common complaint in small animal practice and is often challenging to manage successfully because of its multifactorial and recurrent nature. Breeds with pendulous pinnae, such as Cocker Spaniels, Basset Hounds and Labrador Retrievers, are predisposed owing to poor ventilation, retention of moisture and debris within the ear canal and subsequent promotion of microbial proliferation (Rosser, 2004) ^[7].

Coagulase-positive staphylococci (CoPS) are gram-positive bacteria that commonly exist as commensals on the skin and mucous membranes of humans and animals while also acting as opportunistic pathogens (Fontana & Favaro, 2018) ^[8]. These organisms typically colonize areas such as the nasal cavity, throat and perianal region in a symbiotic relationship with their hosts (Nagase *et al.*, 2002; Wertheim *et al.*, 2005) ^[9, 10]. The CoPS group currently comprises ten recognized species: *Staphylococcus aureus*, *S. intermedius*, *S. pseudintermedius*, *S. coagulans* (formerly *S. schleiferi* subsp. *coagulans*), *S. hyicus* (variable

coagulase activity), *S. delphini*, *S. lutrae*, *S. agnetis* (variable coagulase activity), *S. cornubiensis* and *S. ursi* (González-Domínguez *et al.*, 2020; Perreten *et al.*, 2020) [11, 12].

S. pseudintermedius is the predominant CoPS species causing skin and soft-tissue infections in dogs. It commonly colonizes the skin, mucosa or GIT of over 50% of healthy dogs and fewer healthy cats. Normally commensal, it serves as an opportunistic pathogen and a primary cause of canine pyoderma and otitis externa (Paul *et al.*, 2012) [13].

Several methods exist for bacterial detection, but multiplex PCR (M-PCR) is the most rapid and convenient for identifying coagulase-positive staphylococci (CoPS). (Sasaki *et al.*, 2010) [14] analyzed nuc gene sequences in CoPS and related species to develop an M-PCR assay targeting the nuc locus for reliable species differentiation. Conventional identification involves cultural isolation, biochemical tests, and sugar fermentation patterns, which often require more than 72 hours for genus-and species-level confirmation. To overcome these delays, molecular approaches like M-PCR have become the preferred method for faster and more accurate results. This study is a molecular survey of CoPS isolates from COE, aimed at expanding our understanding of their phenotypic and genotypic identification.

Materials and Methods

Sample collection

Dogs exhibiting head shaking, downward ears, pinna swelling and purulent discharge were selected for sample collection attending the Veterinary Clinical Complex, Veterinary College, Junagadh, Gujarat, India. Sterile cotton-tipped swabs moistened with sterile 0.9% saline solution were used to collect ear exudate samples from 87 COE patients. These swabs were transported to the Department of Veterinary Microbiology, Kamdhenu University, Junagadh, on the same day while maintaining a cold chain or stored at 4 °C until further processing.

Isolation and biochemical characterization

The samples collected from the clinical cases of COE were streaked onto brain heart infusion (BHI) agar plates and incubated at 37 °C for 24 hours to obtain pure colonies. The bacterial isolates were identified at the genus level by

observing colony characteristics, performing Gram's staining, examining microscopic morphology and assessing growth on Mannitol Salt Agar (HiMedia Laboratory, Mumbai). Additional biochemical tests (oxidase, tube coagulase and catalase tests) were performed according to the proper procedures (Quinn *et al.*, 1994) [15].

Genomic DNA extraction from bacteria

Genomic DNA was extracted from pure *Staphylococcus* cultures using the conventional Proteinase K-SDS method (Sambrook and Russell, 2001) [16]. The quality and concentration of the isolated DNA were determined using a μDrop™ Plate in a μDrop plate reader (Thermo Scientific).

PCR-based detection of the *Staphylococcus* genus and species

Primers specific for detecting the genus and species of CoPS were used according to protocols from various researchers. Details of the primers, including their names, oligonucleotide sequences, targeted genes and product sizes are provided in Table 1. The composition of the PCR reaction mixture followed the guidelines established by Mason *et al.* (2001) [17] and (González-Domínguez *et al.*, 2020) [11]. The PCR reaction mixture was prepared as per Table 2. The PCR conditions for detecting the *Staphylococcus* genus-specific 16S rRNA gene included an initial denaturation step at 95 °C for 5 minutes, followed by 35 cycles of 45 seconds at 95 °C for denaturation, 40 seconds at 55 °C for annealing and a 45-second extension at 72 °C. The final extension was done at 72 °C for 7 minutes. For *Staphylococcus* species-specific gene amplification (*Pse-nuc*, *Au-nuc* and *Sch-nuc*), the cycling conditions included an initial denaturation at 95 °C for 5 minutes, followed by 35 cycles of 10 seconds denaturation at 95 °C, 30 seconds annealing at 60 °C and 30 seconds extension at 72 °C, with a final extension at 72 °C for 5 minutes (Table 3). PCR amplifications were performed using a programmable thermal cycler (Verity, Applied Biosystems by Life Technologies, Singapore). The resulting PCR products (4 μL) were analyzed by agarose gel electrophoresis (1.5% w/v), and the gel visualization was done by using a gel documentation system (Bio-PrintST4® Vilber Lourmat).

Table 1: Oligonucleotide sequences (primers) used for the characterization of major CoPS by targeting genus-specific and species-specific target genes

Target gene	Organism	Primer sequence (5' to 3')	Product size	Reference
16S rRNA	Genus- <i>Staphylococcus</i>	F: CCTATAAGACTGGGATAACTTCGGG R: CTTTGAGTTCAACCTTGCCTCG	791bp	(Mason <i>et al.</i> , 2001) [17]
<i>Pse-nuc</i>	<i>Staphylococcus pseudintermedius</i>	F: TGATGCAGCTTCCGTATG R: AAAGATGGCAAGATGAACG	99bp	(González-Domínguez <i>et al.</i> , 2020) [11]
<i>Au-nuc</i>	<i>S. aureus</i>	F: CAGAACCGGTAAACCGAAT R: CCATAGCGGTCTTGCTTTTC	127bp	
<i>Sch-nuc</i>	<i>S. schleiferi</i> subsp. <i>coagulans</i>	F: TTAAAACGACGGAAGGCAGT R: CCAATCATACGCACACGTTTC	115bp	

(F, forward; R, reverse)

Table 2: Amounts and concentrations of the components utilized in the PCR reaction

Sr. No.	Components	PCR Reaction
1.	PCR Master Mix (2X)	12.5 μl
2.	Forward Primer (10 pmol/μl)	1 μl
3.	Reverse Primer (10 pmol/μl)	1 μl
4.	Template DNA	3 μl
5.	NFW (Nuclease Free Water)	7.5 μl
	Total Reaction volume	25 μl

Table 3: Thermal cycling conditions for different primer pairs used in PCR for the identification of the *Staphylococcus* genus and major CoPs

Target gene	Cycling conditions				
	Initial denaturation	Denaturation	Annealing	Extension	Final extension
16SrRNA	95 °C for 8 min.	95 °C for 45 sec.	55 °C for 40 sec.	72 °C for 45 sec.	72 °C for 7 min.
			Repeated for 35 cycles		
<i>Pse-nuc</i>	95 °C for 5 min.	95 °C for 10 sec.	60 °C for 30 sec.	72 °C for 30 sec.	72 °C for 5 min.
			Repeated for 35 cycles		
<i>Au-nuc</i>	95 °C for 5 min.	95 °C for 10 sec.	60 °C for 30 sec.	72 °C for 30 sec.	72 °C for 5 min.
			Repeated for 35 cycles		
<i>Sch-nuc</i>	95 °C for 5 min.	95 °C for 10 sec.	60 °C for 30 sec.	72 °C for 30 sec.	72 °C for 5 min.
			Repeated for 35 cycles		

Results and Discussion

Isolation, identification and biochemical characterization

A total of 110 bacterial isolates were obtained from clinical cases of COE. Primary bacterial isolation was carried out on BHI agar. Out of which, 53(48.18%) isolates of *Staphylococcus* spp. were identified based on their morphologies, culture characteristics, Gram's staining and biochemical tests from clinical cases (E.g., oxidase test, catalase test and tube coagulase test) of COE (Fig.1, 2 and 3). In the tube coagulase test, 47/53 *Staphylococcus* spp. were found coagulase-positive, while 6/53 were coagulase-negative (other *Staphylococcus* species). A similar study on the COE by Parmar *et al.* (2020) ^[18] and Vanisree *et al.* (2025) ^[19] identified *Staphylococcus* spp. as the most common pathogen in 56.57% and 70.24% of cases, which was slightly higher than observed in the current study, 48.18%. Whereas Hassan *et al.* (2023) ^[20] found a lower incidence of *Staphylococcus* spp. (36%), which was slightly lower than this study.

S. pseudintermedius was the most prevalent species,

accounting for 67.92% (36/53). *S. aureus* was identified in 15.09% (8/53), while *S. schleiferi* subsp. *coagulans* accounted for 5.66% (3/53). Additionally, 11.32% (6/53) of the isolates were categorized as other *Staphylococcus* species (Chart 1). Similar results were obtained by Hassan *et al.* (2023) ^[20], who reported 41.6% *S. pseudintermedius* and 22.2% *S. aureus*; Prošić *et al.* (2024) ^[21] reported 65.8% as *S. pseudintermedius*, 22.4% as *S. aureus*, 7.9% as *S. coagulans* and 3.9% as *S. intermedius*; Rana *et al.* (2022) ^[22] reported 78.16% *S. pseudintermedius*, 19.71% *S. aureus* and 2.11% other *Staphylococcus* spp.; Makwana *et al.* (2023) ^[23] also reported *S. pseudintermedius* (40.63%), *S. schleiferi* subsp. *coagulans* (18.75%) and *S. aureus* (15.63%). Whereas a higher percentage of incidence was reported by Tamakan & Gocmen (2022) ^[24], 87.5% *S. pseudintermedius*, 9.37% *S. aureus* and 3.12% *S. schleiferi*. Kadhim & Abdullah (2022) ^[25] and Núñez *et al.* (2025) ^[26] also found the highest prevalence for *S. pseudintermedius*, 28.5% and 37.5% respectively, among all *Staphylococcus* species, which was less in percentage for *S. pseudintermedius* than this study.

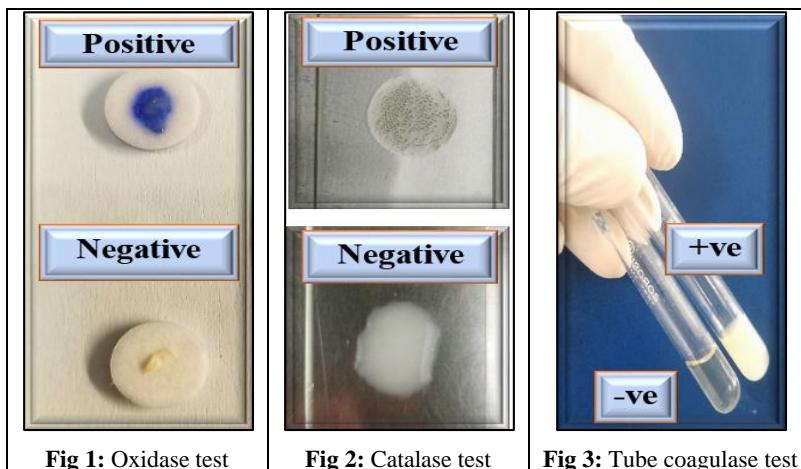
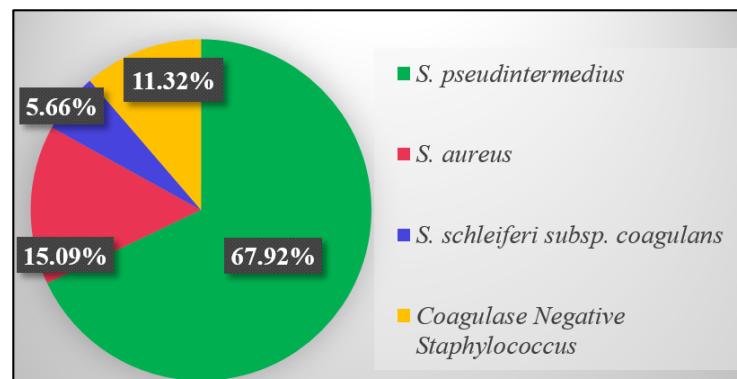



Fig 1: Oxidase test

Fig 2: Catalase test

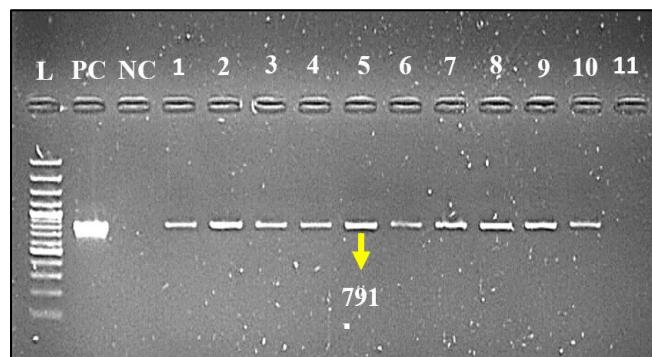
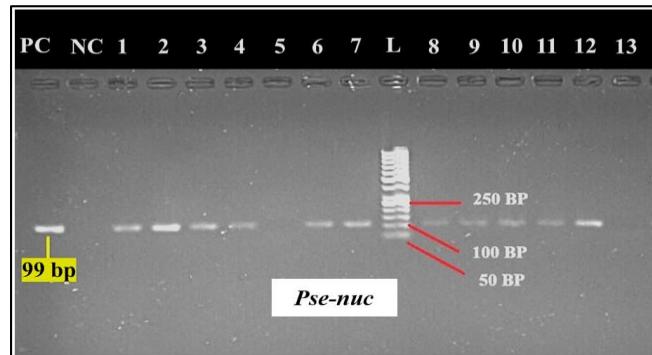

Fig 3: Tube coagulase test

Chart 1: Detection of various *Staphylococcus* spp.

Genus-confirmation and species-level identification of CoPS by PCR


For confirmation of the genus *Staphylococcus*, 16S rRNA gene-targeted primers originally developed by Mason *et al.* (2001) [17] were utilized in this study. All 53 isolates that had been presumptively identified by phenotypic methods successfully amplified the expected 16S rRNA gene fragment, thereby confirming their identity as members of the genus *Staphylococcus* through PCR. Species-level differentiation among the major CoPS was achieved using species-specific thermonuclease (*nuc*) gene primers for *S. aureus*, *S. pseudintermedius* and *S. schleiferi* subsp. *coagulans*, as previously reported by González-Domínguez *et al.* (2020) [11]. Reference strains *S. aureus* ATCC 43300, *S. pseudintermedius* ATCC 49444 and *S. schleiferi* subsp. *coagulans* ATCC 49545 served as positive controls, whereas *Escherichia coli* MTCC-722 was included as a negative control to validate the specificity of the *nuc* gene-based PCR assays.

Among the 53 phenotypically presumptive staphylococcal isolates, 47 were successfully verified as members of the genus *Staphylococcus* through amplification of the genus-specific 16S rRNA gene in PCR (Fig. 4).

[L: 100 bp plus ladder; PC: Positive control (*S. aureus* 43300); Positive samples: 1 to 10; Negative samples: 11; NC: Negative control (*E. coli* MTCC 722)]

Fig 4: Genus-specific PCR of *Staphylococcus* spp. for 16S rRNA gene

[L: 50 bp plus ladder; PC: Positive control (*S. pseudintermedius*); Positive samples: 1 to 4, 6 to 12; Negative samples: 5, 13; NC: Negative control]

Fig 5: Species-specific PCR of *S. pseudintermedius* for *Pse-nuc* gene

Subsequent species-specific PCR targeting the *nuc* gene revealed the following distribution: 36 isolates (67.92%) produced the characteristic 99-bp amplicon diagnostic for *S. pseudintermedius*, 8 isolates (15.09%) showed the 127-bp product indicative of *S. aureus* and 3 isolates (5.66%)

generated the 115-bp fragment specific to *S. schleiferi* subsp. *coagulans*. The remaining 6 isolates (11.32%) of the molecularly confirmed *Staphylococcus* population did not amplify any of the three species-specific *nuc* gene targets and therefore could not be assigned to these major coagulase-positive species.

In the present study, all staphylococcal isolates were molecularly confirmed as belonging to the genus *Staphylococcus* through amplification of the 16S rRNA gene. This complete concordance between phenotypic and genotypic identification is consistent with findings from several previous reports. Notably, Mathapati *et al.* (2016) [27], Chaudhary *et al.* (2021) [28] and Kadhim & Abdullah (2022) [25] similarly achieved 100% positivity for the 16S rRNA gene among their staphylococcal isolates from canine clinical samples. Likewise, Zedan *et al.* (2023) [29] successfully confirmed all 29 phenotypically presumptive *Staphylococcus* isolates via genotypic detection of the same marker.

In the present study, 76.60% (36/47) of CoPS isolates were confirmed as *S. pseudintermedius* through detection of the species-specific *nuc* gene. This prevalence is notably higher than that reported in several prior investigations using similar PCR-based methodologies. For instance, Weese *et al.* (2010) [30] and Dziva *et al.* (2015) [31] identified *S. pseudintermedius* in 39.2% and 38.5% of isolates, respectively, while Vincze *et al.* (2014) [32] and Bannoehr *et al.* (2015) [33] documented rates around 45%. In contrast, Schmidt *et al.* (2017) [34] reported a substantially higher positivity rate of 89.21%, whereas Kadhim & Abdullah (2022) [25] observed a lower prevalence of 28.5% (10/35) among staphylococcal isolates. More recently, Chehida *et al.* (2024) [35] detected *S. pseudintermedius* in 64.4% of 99 CoPS isolates based on thermonuclease gene profiling.

The high prevalence of *S. pseudintermedius* in our study (76.60%) confirms its status as the dominant pathogen in COE and the leading CoPS in canine skin and ear infections. Observed differences among studies likely stem from variations in geographic location, sample size, case type (acute vs. chronic), or specimen collection method, underscoring the value of ongoing molecular surveillance for regional epidemiological insights.

In the current study, 17.02% (8/47) of CoPS isolates were identified as *S. aureus* based on the detection of the *Au-nuc* gene. This proportion is somewhat lower than, yet comparable to, rates reported in previous investigations. For example, Weese *et al.* (2010) [30] documented *S. aureus* in 32.4% of canine staphylococcal isolates, while Davis & Thompson (2021) [36] reported a 29.2% incidence in cases of COE. Similarly, Nakamura *et al.* (2020) [37] and Ruzauskas *et al.* (2016) [38] observed incidences of 25.9% and 25%, respectively, while Chehida *et al.* (2024) [35] identified *S. aureus* in 20.2% of CoPS isolates. Although slightly reduced in our cohort, this prevalence falls within the typical range described in the literature and supports the recognition of *S. aureus* as an important, albeit secondary, pathogen relative to *S. pseudintermedius* in canine skin and ear infections.

In the present study, *S. schleiferi* subsp. *coagulans* accounted for 6.38% (3/47) of staphylococcal isolates. This proportion is moderately lower than the rates documented in prior reports, including 10.2% by (Ruzauskas *et al.*, 2016) [38], 15% by (Garcia *et al.*, 2022) [39] and 10.1% by (Chehida *et al.*, 2024) [35].

Conclusions

This study establishes *Staphylococcus* spp. as the foremost etiological agent in canine otitis externa (48.18% of isolates), with coagulase-positive staphylococci dominating (88.68%). Integrative phenotypic and genotypic analyses confirmed *S. pseudintermedius* as the predominant pathogen (67.92% overall; 76.60% of CoPS), followed by *S. aureus*, *S. schleiferi* subsp. *coagulans*. PCR-based species-specific nuc gene amplification proved superior in precision and sensitivity to biochemical methods, enabling accurate identification of non-specific isolates. This marked ascendancy of *S. pseudintermedius* reinforces its primacy in canine otic and cutaneous infections, often exceeding global prevalences. These findings mandate precise species-level diagnostics to guide targeted therapy and antimicrobial stewardship, while geographic variability underscores the need for sustained molecular surveillance to combat evolving resistance in staphylococcal populations.

Acknowledgements

The authors express their sincere gratitude to all the clinicians at the Veterinary Clinical Complex for their invaluable assistance in sample collection. We also extend our heartfelt thanks to the laboratory technician and supporting staff of the Department of Veterinary Microbiology, Kamdhenu University, Junagadh, for their dedicated help with all associated laboratory work throughout this study.

Conflict of Interest

All authors declare no conflict of interest.

References

1. Huang HP, Little CJL, McNeil PE. Histological changes in the external ear canal of dogs with otitis externa. *Vet Dermatol.* 2009;20(5-6):422-428. doi:10.1111/j.1365-3164.2009.00853.x.
2. Miller WH, Griffin CE, Campbell KL. *Muller and Kirk's small animal dermatology*. 7th ed. St. Louis (MO): Elsevier; 2013. p. 1-948.
3. Njaa BL, Cole LK, Tabacca N. Practical otic anatomy and physiology of the dog and cat. *Vet Clin North Am Small Anim Pract.* 2012;42(6):1109-1126. doi:10.1016/j.cvsm.2012.08.011.
4. Saridomichelakis MN, Koutinas AF, Farmaki R, Leontides L. Aetiology of canine otitis externa: a retrospective study of 100 cases. *Vet Dermatol.* 2007;18(5):341-347.
5. Topală R, Burtan I, Fântânaru M, Ciobanu S, Burtan L. Epidemiological studies of otitis externa at carnivores. *Lucr Științifice Med Vet.* 2007;40:247-251.
6. Summers JF, O'Neill DG, Church D, Collins L, Sargan D, Brodbelt DC. Health-related welfare prioritisation of canine disorders using electronic health records in primary care practice in the UK. *BMC Vet Res.* 2019;15:163-163. doi:10.1186/s12917-019-1902-0.
7. Rosser EJ. Causes of otitis externa. *Vet Clin North Am Small Anim Pract.* 2004;34(2):459-468.
8. Fontana C, Favaro M. Coagulase-positive and coagulase-negative staphylococci in human disease. In: *Pet-to-man travelling staphylococci: a world in progress*. Elsevier; 2018. p. 25-42.
9. Nagase N, Sasaki A, Yamashita K, Shimizu A, Wakita Y, Kitai S, et al. Isolation and species distribution of staphylococci from animal and human skin. *J Vet Med Sci.* 2002;64(3):245-250. doi:10.1292/jvms.64.245.
10. Wertheim HFL, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh HA, et al. The role of nasal carriage in *Staphylococcus aureus* infections. *Lancet Infect Dis.* 2005;5(12):751-762. doi:10.1016/S1473-3099(05)70295-4.
11. González-Domínguez MS, Carvajal HD, Calle-Echeverri DA, Chinchilla-Cárdenas D. Molecular detection and characterization of the *mecA* and *nuc* genes from *Staphylococcus* species isolated from dogs suffering superficial pyoderma and their antimicrobial resistance profiles. *Front Vet Sci.* 2020;7:376-376. doi:10.3389/fvets.2020.00376.
12. Perreten V, Kania SA, Bemis D. *Staphylococcus ursi* sp. nov., a new member of the *Staphylococcus intermedius* group isolated from healthy black bears. *Int J Syst Evol Microbiol.* 2020;70(8):4637-4645. doi:10.1099/ijsem.0.004335.
13. Paul NC, Bargman SC, Moodley A, Nielsen SS, Guardabassi L. *Staphylococcus pseudintermedius* colonization patterns and strain diversity in healthy dogs. *Vet Microbiol.* 2012;160(3-4):420-427.
14. Sasaki T, Tsubakishita S, Tanaka Y, Sakusabe A, Ohtsuka M, Hirotaki S, et al. Multiplex-PCR method for species identification of coagulase-positive staphylococci. *J Clin Microbiol.* 2010;48(3):765-769. doi:10.1128/JCM.01232-09.
15. Quinn PJ, Carter ME, Markey B, Carter GR. Enterobacteriaceae. In: *Clinical veterinary microbiology*. Mosby; 1994. p. 109-135.
16. Sambrook J, Russell DW. *Molecular cloning: a laboratory manual*. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001. p. 1-2344.
17. Mason WJ, Blevins JS, Beenken K, Wibowo N, Ojha N, Smeltzer MS. Multiplex PCR protocol for the diagnosis of staphylococcal infection. *J Clin Microbiol.* 2001;39(9):3332-3338. doi:10.1128/JCM.39.9.3332-3338.2001.
18. Parmar JJ, Rao N, Shah AI, Sadhu DB, Bhandari BB. Clinical studies on ear infections, microbiological evaluation and therapeutic management in canines. *Int J Curr Microbiol Appl Sci.* 2020;9(1):1496-1501. doi:10.20546/ijcmas.2020.901.167.
19. Vanisree Y, Filia G, Chandra M, Chabra S. Identification, antimicrobial sensitivity and molecular detection of *Staphylococcus aureus* and *Staphylococcus pseudintermedius* isolated from ear infections of canines. *Indian J Vet Sci Biotechnol.* 2025;21(5):81-87. doi:10.48165/ijvsbt.21.5.16.
20. Hassan M, Kekeç AI, Halaç B, Kahraman BB. Otitis externa in dogs: distribution and antimicrobial susceptibility patterns of *Staphylococcus* spp. isolates. *Maced Vet Rev.* 2023;46(1):43-50. doi:10.2478/macvetrev-2023-0012.
21. Prošić I, Milčić-Matić N, Milić N, Radalj A, Aksentijević K, Ilić M, et al. Molecular prevalence of *mecA* and *mecC* genes in coagulase-positive staphylococci isolated from dogs with dermatitis and otitis. *Acta Vet (Beogr).* 2024;74(1):117-132. doi:10.2478/acve-2024-0009.
22. Rana EA, Islam MZ, Das T, Dutta A, Ahad A, Biswas PK, et al. Prevalence of coagulase-positive methicillin-resistant *Staphylococcus aureus* and *Staphylococcus*

pseudintermedius in dogs in Bangladesh. Vet Med Sci. 2022;8(2):498-508. doi:10.1002/vms3.701.

23. Makwana PM, Parmar SM, Vala JA, Parasana DK, Patel DR, Kalyani IH, *et al.* Molecular characterization and antimicrobial-resistant pattern of *Staphylococcus* species isolated from pyoderma cases in dogs. Biol Forum. 2023;15(11):82-87.

24. Tamakan H, Gocmen H. Genetic characterization of methicillin-resistant *Staphylococcus pseudintermedius* in dogs and cats in Cyprus. Pak J Zool. 2022;54(4):1995-1997.

25. Kadhim HB, Abdullah AH. Molecular detection of *Staphylococcus pseudintermedius* isolated from otitis in dogs. Ann For Res. 2022;65(1):10884-10900.

26. Núñez A, Lapierre L, Escobar B, Castro R. Antimicrobial resistance of *Staphylococcus* isolated from the ear canal of dogs with otitis externa in Chile. Open Vet J. 2025;15(6):2895-2902. doi:10.5455/OVJ.2025.v15.i6.59.

27. Mathapati BS, Nimavat V, Javia B, Barad D, Jivani H, Maharana B. Isolation and characterisation of multidrug-resistant coagulase-negative *Staphylococcus schleiferi* subsp. *schleiferi* from canine pyoderma. J Immunol Immunopathol. 2016;18:39-46.

28. Chaudhary SS, Chauhan HC, Sharma KK, Patel SS, Mohapatra SK, Patel AC, *et al.* Bacteriological and molecular identification of *Staphylococcus aureus* from different affections of canines. Indian J Anim Res. 2021;55(4):474-478.

29. Zedan A, Alatfeehy N, Marouf S. Isolation and antibiogram profiles of *Staphylococcus aureus* isolates from cow milk and dog samples. EKB J Manag Syst. 2023;8(1):38-44.

30. Weese JS, van Duijkeren E, Guardabassi L. Molecular epidemiology of methicillin-resistant *Staphylococcus pseudintermedius*. Vet Microbiol. 2010;143(3-4):329-336.

31. Dziva F, Wint C, Auguste T, Heeraman C, Dacon C, Yu P, *et al.* First identification of methicillin-resistant *Staphylococcus pseudintermedius* from dogs with otitis externa in Trinidad. Infect Ecol Epidemiol. 2015;5:29170-29170. doi:10.3402/iee.v5.29170.

32. Vincze S, Paasch A, Walther B, Lübke-Becker A. Identification of *Staphylococcus pseudintermedius* using biochemical and molecular methods. Vet Microbiol. 2014;171(1-2):58-63.

33. Bannoehr J, Franco A, Iurescia M. Molecular characterization and species identification of coagulase-positive staphylococci in dogs. J Vet Sci. 2015;16(4):513-518.

34. Schmidt VM, Williams NJ, Pinchbeck G, Corless CE, Shaw S, McEwan N, *et al.* Antimicrobial resistance and characterisation of staphylococci isolated from healthy Labrador retrievers in the UK. BMC Vet Res. 2014;10:17-17.

35. Chehida Ben F, Tombari W, Gharsa H, Rabia Y, Ferhi S, Jrad M, *et al.* Molecular characterization, antimicrobial resistance and virulence factors of methicillin-sensitive coagulase-positive *Staphylococcus* spp. from dogs. Microbiol Res. 2024;15(3):1208-1224.

36. Davis R, Thompson K. Identification of coagulase-positive *Staphylococcus* spp. in canine otitis externa via PCR amplification of the *nuc* gene. J Vet Diagn Invest. 2021;33(2):305-312.

37. Nakamura T, Yamada K, Sato M. PCR identification of major *Staphylococcus* species in veterinary infections via the *nuc* gene. J Vet Sci. 2020;21(3):e35-e35.

38. Ruzauskas M, Couto N, Pavilonis H. Detection and antimicrobial resistance of *Staphylococcus pseudintermedius* in canine clinical samples. Acta Vet Scand. 2016;58(1):5-5.

39. Garcia L, Patel R, Hughes T. PCR detection of *Staphylococcus* species in canine skin infections. J Appl Microbiol. 2022;132(4):2007-2015.