

ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; SP-9(11): 1000-1002 www.biochemjournal.com Received: 23-08-2025

Received: 23-08-2025 Accepted: 26-09-2025

ISSN Print: 2617-4693

HN Der

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

NV Radadiya

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

TV Ghevariya

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

RN Mansuri

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

VR Jinjala

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

KG Kanjariya

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

HE Patil

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

BK Davda

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

Corresponding Author: HN Der

Main Sorghum Research Station, Navsari Agricultural University, Surat, Gujarat, India

Effect of nitrogen scheduling and cultivars on *kharif* grain sorghum (*Sorghum bicolor* L.)

HN Der, NV Radadiya, TV Ghevariya, RN Mansuri, VR Jinjala, KG Kanjariya, HE Patil and BK Davda

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i11Sm.6370

Abstract

A field study was done during the *kharif* season from 2022-23 to 2024-25 at the Main Sorghum Research Station in Surat, NAU, Surat to check how effect of nitrogen scheduling and cultivars on *kharif* grain sorghum (*Sorghum Bicolor L.*). Results showed that significantly highest grain and stover yields of sorghum were achieved with N3: 25% as basal +50% at 30 DAS + 25% at boot leaf stage, which was at par with N2 (50% N as basal + 25% N at 30 DAS + 25% N at boot leaf stage).

Keywords: Sorghum, grain sorghum, millet, nitrogen, fertilizer, fertilization, scheduling, cultivars, GNJ-1, GJ-44, Boot leaf stage, grain, Stover, Gujarat

Introduction

Sorghum (*Sorghum bicolor* L.) is the most important type of millets and rank as the fourth major cereal crop after maize, wheat and rice. It is used food, feed and fodder crop. In India, the area under Sorghum is approximately 5127 lakh ha with an each year, production of about 4370 lakh tonnes and an average productivity of 952 kg/ha. In Gujarat, it is cultivated over an area of 84.88 lakh ha with a production and productivity of 115.33 lakh tonnes and 1359 kg/ha, respectively.

Among essential plant nutrients, nitrogen plays the significant role in augmenting agricultural productions and its deficiency limits crop production (Aulakh and Malhi, 2005) ^[3]. The use and demand of nitrogen is going up every day. Because nitrogen moves easily through soil and plants, it is often lost in different ways (Abd EI-Lattief, 2011) ^[1]. Even when farmers use the best ways to manage nitrogen, 30 to 50% of applied nitrogen lost through different mechanism and hence, the farmer have to apply more nitrogen than actual need of the crop to compensate the loss. Using a planned approach for applying nitrogen is low cost effective way to reduce nutrient losses, so that nutrient supply is synchronized with plant demand and increases NUE (Gehl *et al.*, 2005) ^[4]. During the last few years, many high yielding cultivars of grain sorghum have been evolved. Cultivars of a crop plays an important role in increasing crop production but information on the response of newly evolved cultivars to split application of nitrogen is meagre. Considering these facts an experiment was conducted for evaluation of nitrogen scheduling and cultivars on *kharif* grain sorghum.

Materials and Methods

A field experiment was carried out at Main Sorghum Research Station, Navsari Agricultural University, Surat (Gujarat) during 2022-23 to 2024-25 to find out the effect of nitrogen scheduling and cultivars on *kharif* grain sorghum. The experiment was set up in RBD design with factorial concept which replicated thrice with two factors of cultivars and four factors of Nitrogen scheduling *i.e.*; Factor-A:-Cultivars: V₁: GNJ-1 and V₂: GJ-44, and Factor-B: Application of Nitrogen Scheduling: N₁: 50% N as basal + 50% N at 30 DAS, N₂: 50% N as basal + 25% N at 30 DAS + 25% N at boot leaf stage, N₃: 25% N as basal + 50% N at 30 DAS + 15% N at boot leaf stage + 10% N at grain filling stage. The gross plot size of each experimental unit was 4.5 m x 5.1 m and net plot size was 3.6 m x 4.5 m. The crop was sown with spacing of 45 cm x 15 cm, FYM 5 t/ha and 80-40-00 kg N-P₂O₅-K₂O/ha fertilization with seed treatment of

Azospirillum + PSB @ 10 ml/kg seed. The basal fertilization was supplied through DAP and urea, while top dressing through urea.

Plant was counted and recorded from net plot for plant population. Flowering days for 50% plants and days to physiological maturity were recorded. Plant height was recorded from five randomly selected plants from the net plot area and marked with tags. The heights of each tagged plants was measured from ground level to the top of the plant when they were harvest. The average height was then calculated and expressed in cm. Earhead length and 100 seed weight was recorded from tagged plants. The green fodder was harvested by hand with the help of a sickle, after sun drying stover tied together. The earhead was harvested, dried and threshed manually. Grain yield and stover yield was weighed in kg for each net plot and then converted into kilogram per hectare.

Results and Discussion Growth attributing characters

Growth attributing characters of sorghum *viz.*, initial and final plant population, days to 50% flowering and days to physiological maturity were not influenced significantly due to various cultivars as well as nitrogen scheduling. Plant height was found significantly higher with GNJ-1 cultivar of sorghum while, plant height remained unaffected by nitrogen scheduling (Table-1). Higher plant height with GNJ-1 cultivar was found due to physiological characteristics of the cultivars.

Yield and yield attributes

The yield attributing characters of sorghum viz., 100 seed

weight was not significantly influenced due to various cultivars as well as nitrogen scheduling. Earhead length was significantly higher with GJ-44 cultivar of sorghum and nitrogen scheduling in three splits; N_3 : 25% as basal + 50% at 30 DAS + 25% at boot leaf stage While, N_2 : 50% as basal + 25% at 30 DAS + 25% at boot leaf stage and N_4 : 25% as basal + 50% at 30 DAS + 15% at boot leaf stage + 10% at grain filling stage remained at par. Both the cultivars have no any significant effect on grain yield but N_3 : 25% as basal + 50% at 30 DAS + 25% at boot leaf stage has recorded highest grain yield (2807 kg/ha) and N_2 and N_3 remained at par. Highest stover yield (10883 kg/ha) was found with GNJ-1 cultivar of sorghum and nitrogen scheduling of N_3 and remained at par with N_2 and N_4 (Table-2).

An increase in earhead length could be because of the positive effect of RDF which provided the right amoun nutrients at the right time during the crop's growth. Nitrogen is associated with protoplasm synthesis and growth. These results agree with the studies by Kalibhavi *et al.* (2001) ^[5], Miko and Manga (2008) ^[7], Afzal *et al.* (2012) ^[2], Singh and Sumeriya (2012) ^[9] and Singh *et al.* (2013) ^[10].

The rise in grain and stover yield could be because increase in translocation of assimilates from source to sink. This might happen because the plant had the right amount of of NPK, which helped in increased rate of photosynthesis and also active absorption of various nutrients and translocation of photosynthates to the site of storage part of plant (sink). The present findings are collaborative with Kubsad (2018) [6], Munagilwar *et al.* (2020) [8], Soleymani *et al.* (2011) [12] and Singh *et al.* (2012) [11].

Table 1: Growth attributing characters influenced by different cultivars and nitrogen scheduling in sorghum

Treatments	Plant Population		Days to 50%	Days to physiological	Plant Height			
	Initial	Final	flowering	maturity	(cm) at harvest			
Cultivars (V)	Cultivars (V)							
V ₁ : GNJ-1	228	215	70	110	230			
V ₂ : GJ-44	229	219	71	109	173			
S.Em. ±	4.55	3.83	1.20	1.82	3.17			
C.D. at 5%	NS	NS	NS	NS	9.04			
Nitrogen Scheduling (N)								
N ₁ : 50% as basal + 50% at 30 DAS	227	215	69	108	198			
N_2 : 50% as basal + 25% at 30 DAS + 25% at boot leaf stage	229	217	70	108	202			
N_3 : 25% as basal + 50% at 30 DAS + 25% at boot leaf stage	232	220	72	110	203			
N ₄ : 25% as basal + 50% at 30 DAS + 15% at boot leaf stage + 10% at grain filling stage	225	215	73	112	203			
S.Em. ±	6.43	5.42	1.70	2.58	4.48			
C.D. at 5%	NS	NS	NS	NS	NS			
Interaction								
S.Em. ±	9.09	7.67	2.40	3.65	6.34			
C.D. at 5%	NS	NS	NS	NS	NS			
C.V. %	11.96	10.60	10.17	9.99	9.43			
Source	YxVxN	YxVxN	YxVxN	YxVxN	YxVxN			
S.Em. ±	15.75	13.28	4.16	6.32	10.98			
C.D. at 5%	NS	NS	NS	NS	NS			

Table 2: Yield attributing characters influenced by different cultivars and nitrogen scheduling in sorghum

Treatments	Ear Head Length (cm)	100 seed weight (g)	Grain Yield (kg/ha)	Stover Yield (kg/ha)
Cultivars (V)				
V ₁ : GNJ-1	26.27	2.35	2532	10883
V ₂ : GJ-44	28.11	2.34	2644	9023
S.Em. ±	0.33	0.04	39.22	125.83
C.D. at 5%	0.95	NS	NS	359.11
Nitrogen Scheduling (N)				
N ₁ : 50% as basal + 50% at 30 DAS	25.74	2.28	2281	9049
N_2 : 50% as basal + 25% at 30 DAS + 25% at boot leaf stage	27.35	2.37	2686	10103
N ₃ : 25% as basal + 50% at 30 DAS + 25% at boot leaf stage	28.35	2.38	2807	10583
N4: 25% as basal + 50% at 30 DAS + 15% at boot leaf stage + 10% at grain filling stage	27.32	2.34	2577	10076
S.Em. ±	0.47	0.06	55.47	177.95
C.D. at 5%	1.35	NS	158.32	507.86
Interaction				
S.Em. ±	0.67	0.09	78.45	251.66
C.D. at 5%	NS	NS	NS	NS
C.V. %	7.37	11.26	9.09	7.59
Source	YxVxN	YxVxN	YxVxN	YxVxN
S.Em. ±	1.16	0.15	135.88	435.88
C.D. at 5%	NS	NS	NS	NS

Conclusion

Highest grain and stover yield can be obtained in sorghum by applying three splits i.e.; 25% N as basal + 50% N at 30 DAS + 25% N at boot leaf stage of nitrogen fertilization under south Gujarat condition.

References

- 1. Abd El-Lattief EA. Nitrogen management effect on the production of two sweet *Sorghum* cultivars under arid regions conditions. Asian J Crop Sci. 2011;3:77-84.
- Afzal M, Ahmad A, Ahmad AUH. Effect of nitrogen on growth and yield of *Sorghum* forage (*Sorghum bicolor* (L.) Moench CV.) under three cutting system. Cercet Agron în Moldova. 2012;45(4):152.
- 3. Aulakh MS, Malhi SS. Interactions of nitrogen with other nutrients and water: Effect on crop yield and quality, nutrient use efficiency, carbon sequestration and environmental pollution. Adv Agron. 2005;86:341-409.
- 4. Gehl RJ, Schmidt JP, Stone LR, Schlegel AJ, Clark GA. In situ measurements of nitrate leaching implicate poor nitrogen and irrigation management on sandy soils. J Environ Qual. 2005;34(6):2243-2254.
- 5. Kalibhavi CM, Kachapur MD, Patil RH. Performance of rabi *Sorghum* under integrated nutrient management system. Indian J Dryland Agric Res Dev. 2001;16(1):45-50.
- 6. Kubsad VS. Response of rabi *Sorghum* genotypes (*Sorghum bicolor* (L.) Moench) to different fertility levels under rainfed conditions. Int J Curr Microbiol Appl Sci. 2018;7(10):3282-3286.
- Miko S, Manga AA. Effect of intra-spacing and nitrogen rates on growth and yield of *Sorghum* (*Sorghum bicolor* L.) Var. ICSV 400. PAT. 2008;4(2):66-73.
- 8. Munagilwar VA, Khurade NG, More VR, Dhotare VA. Response of *Sorghum* genotypes to different fertility levels on growth and yield attributes of *Sorghum*. Int J Curr Microbiol Appl Sci. 2020;11:3853-3858.

- 9. Singh P, Sumeriya HK. Effect of nitrogen on yield, economics and quality of fodder *Sorghum* genotypes. Ann Plant Soil Res. 2012;14(2):133-135.
- 10. Singh P, Sumeriya HK, Kaushik MK. Effect of in-situ soil moisture conservation practices and its interaction with nutrients in yield, quality and economics of *Sorghum [Sorghum bicolor* (L.) Moench]. Adv Res J Crop Improv. 2013;6(2):88-92.
- 11. Singh P, Sumeriya HK, Solanki NS. Effect of fertilizer levels on productivity and economics of elite *Sorghum* (*Sorghum bicolor* (L.) Meonch) genotypes. Madras Agric J. 2012;99(7-9):567-569.
- 12. Soleymani A, Shahrajabian MH, Naranjani L. The effect of plant density and nitrogen fertilization on yield, yield components and grain protein of grain *Sorghum*. J Food Agric Environ. 2011;9(3&4):244-246.