
International Journal of Advanced Biochemistry Research 2025; SP-9(11): 772-775

ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; SP-9(11): 772-775 www.biochemjournal.com Received: 25-09-2025 Accepted: 30-10-2025

ISSN Print: 2617-4693

Shruti RJ

M.Sc. Scholar, Kiittur Rani Chennamma COH, Arabhavi, Karnataka, India

Shirol AM

Associate Professor, COH, Bagalkot, Karnataka, India

Bhavya N

Ph.D. Scholar, COH, Bengaluru, Karnataka, India

Nataraj KH

Assistant Professor, COH, Kolar, Karnataka, India

Effect of method, time and application of biofertilizer on root development in vegetative propagation of jamun (*Syzygium cuminii* (L.) skeels)

Shruti RJ, Shirol AM, Bhavya N and Nataraj KH

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i11Sj.6314

Abstract

The research was to study the effect of propagation method, timing, and biofertilizer application on root development in *Jamun* (*Syzygium cuminii* (L.) Skeels). Among all the propagation methods evaluated, vegetative methods of propagation were evaluated, softwood grafting with Vesicular Arbuscular Mycorrhiza (VAM) proved to be the most effective, particularly during November and February. This combination yielded the highest number of roots, the maximum fresh root weight, and the longest root length. The positive influence of VAM on rooting parameters highlights its potential for improving propagation efficiency and establishing sustainable, eco-friendly nursery practices.

Keywords: Vegetative propagation, softwood grafting, VAM, root growth, Jamun

Introduction

Java plum (*Syzygium cuminii* (L.) Skeels) is a hardy, underexploited fruit crop belonging to the family *Myrtaceae*. Commonly known as black plum or Indian blackberry, it is widely distributed throughout India, easily cultivated under tropical and sub-tropical climatic conditions, grow well under arid climatic conditions, needs just 400 to 600mm of rainfall for cultivation (Singh and Srivastava, 2000) [10].

The fruit is valued for its pleasant taste, nutritional richness, and therapeutic properties. It contains substantial quantities of dietry fiber, folic acid, antioxidants, vitamin C, and minerals such as iron, calcium, potassium, magnesium, and phosphorus. Traditionally, jamun is used to prepare beverages, squashes, jellies, jams, vinegar, and wine. Medicinally, fruits are used to treat diarrhoea, while seed powder exhibits the property of inhibiting conversion of starch into sugar due to compounds such as jamboline (glucoside) and jambosin (alkaloid) (Dastur, 1952; Thaper, 1958) [3, 13]. The leaves and bark also possess antibacterial and astringent qualities.

However, large-scale cultivation of jamun is constrained by its long juvenile phase, cross-pollinated nature, and lack of standard cultivars. Vegetative methods of propagation techniques such as grafting, cuttings, layering and budding are therefore essential for producing true-to-type plants and shortening the pre-bearing period.

In recent years, the focus on sustainable agriculture has encouraged the use of biofertilizers such as Vesicular Arbuscular Mycorrhiza (VAM - *Acaulospora laevis*). Mycorrhizal fungi enhance root growth, nutrient uptake, and overall plant vigor while reducing dependence on chemical inputs. Hence, this investigation aimed to study a suitable technique for propagation using different methods, time and application of VAM on root development in *Jamun* cv. AJG-85.

Materials and Methods

The investigation was conducted during 2016-2017 at the nusery unit of Department of Fruit Science, KRCCH, Arabhavi, Karnataka, India.

Experimental Details

- **Design:** Factorial Completely Randomized Design (CRD)
- Factors:

Corresponding Author: Shruti RJ M.Sc. Scholar, Kiittur

M.Sc. Scholar, Kiittur Rani Chennamma COH, Arabhavi, Karnataka, India

- **Factor I:** Methods of propagation (Patch budding, Softwood grafting, Hardwood cutting, Air layering,)
- **Factor II:** Months of propagation (November, December, January, February)

Replications: 3Treatments: 16

Plant Material and Treatments Hardwood Cuttings

The matured one year old shoots were prepared for cutting with 20-25 cm length and 6 nodes. Leaves were removed and basal ends were cut at a slant to increase the absorption surface. The blitox treatment was done for cuttings to prevent infection and planted in polybags containing soil:sand:FYM (2:1:1). Each bag received 5 g of VAM inoculum. Regular watering was maintained.

Air Layering

The one year old, uniform pencil size thickness shoots were ringed (2.5-3.0 cm), wrapped with moist sphagnum moss mixed with 5 g of VAM, and tied with transparent polyethylene film (200 gauge). Layers were detached after 90 days and planted in polybags containing the standard potting mixture.

Patch Budding

Seedling rootstocks raised in polybags were used for patch budding. Healthy scions were collected early in the morning and budded above 15 cm from ground level. Each polybag received 5 g of VAM. Budding success was assessed after one month.

Softwood Grafting

Seedling rootstocks (15-20 cm tall) were decapitated and wedge grafted with scion shoots of similar thickness. Grafts were tied with polythene strips and inoculated with **5 g of** VAM per polybag. The grafts were sprayed every 15 days once with 0.2% captan and maintained under shade net conditions and later exposed to sunlight after bud sprouting.

Results and Discussion

Number of Roots

The maximum number of roots was recorded in softwood grafting treated with VAM (36.23, 41.66, and 47.06 at 30, 60, and 90 DAP, respectively). February recorded the maximum root count among the months. The between method and time revealed that softwood grafting with VAM in November and February produced significantly higher root numbers.

Berta *et al.* (1994) [2] reported that VAM induces morphological and anatomical changes in roots, including increased cell division and soluble protein content, thereby enhancing root initiation and growth.

Root Fresh Weight

The maximum fresh root weight was also observed in softwood grafting with VAM (4.48, 5.90, and 7.26 g at 30, 60, and 90 DAP). Among months, February resulted in the heaviest roots. The combination of softwood grafting + VAM + February showed the best performance.

The synthesis of plant growth promotion hormones such as indole acetic acid (IAA) and gibberellins by AM fungi, which stimulate root biomass accumulation (Hooker and Arkinton, 1992; Gunze and Hennessy, 1980) [2, 5].

Root Length

The maximum root length was recorded in softwood grafting with VAM (32.73, 34.15, and 35.56 cm at 30, 60, and 90 DAP). November and February were the most favorable months. Enhanced elongation may result from VAM-induced improvement in nutrient uptake and auxin metabolism. Similar results were reported in mango (Santosh, 2004; Bassanagowda, 2005) [9, 1] and jamun (Devachandra, 2006) [4].

Percent Survivability

Softwood grafting with VAM recorded the highest survival percentage (84.55%), especially in November (87.13%). The favorable temperature and relative humidity during this period promoted cambial activity and callus formation, facilitating better graft union (Hartman and Kester, 1979; Srivastava, 1964) [6, 12].

Table 1: Impact of Propagation Practices, Temporal Factors, and VA Mycorrhizal Inoculation on Root Proliferation at Sequential Intervals

	No. of roots/ plant											
Propagation (P)	30 DAP			60 DAP			90 DAP					
	\mathbf{M}_1	M ₂	Mean of propagation	M ₁	M ₂	Mean of propagation	M ₁	M_2	Mean of propagation			
\mathbf{P}_1	0 (0.70)*	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)			
\mathbf{P}_2	0. (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)			
P_3	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	1.73 (1.49)	0.86 (1.10)	2.53 (1.74)	2.06 (1.59)	2.30 (1.66)			
P_4	0 (0.70)	1.06 (1.25)	0.53 (0.97)	0 (0.70)	4.00 (2.12)	2.00 (1.41)	3.53 (2.00)	5.20 (2.38)	4.36 (2.19)			
P ₅	20.93 (4.62)	27.72 (5.31)	24.33 (4.96)	28.85 (5.41)	34.60 (5.92)	31.72 (5.66)	33.46 (5.82)	40.36 (6.39)	36.91 (6.10)			
P_6	23.33 (4.88)	36.00 (6.03)	29.66 (5.46)	36.06 (6.05)	41.33 (6.46)	38.70 (6.25)	40.86 (6.42)	46.13 (6.82)	43.50 (6.62)			
P ₇	26.93 (5.23)	29.13 (5.44)	28.03 (5.33)	32.86 (5.76)	36.06 (6.04)	34.46 (5.90)	43.39 (6.62)	42.20 (6.53)	42.79 (6.57)			
P_8	36.47 (6.07)	36.00 (6.03)	36.23 (6.05)	41.06 (6.44)	42.26 (6.53)	41.66 (6.49)	47.93 (6.95)	46.20 (6.83)	47.06 (6.89)			
Mean of month (M)	13.45 (2.95)	16.24 (3.27)	1	17.35 (3.31)	20 (3.74)	-	21.46 (3.87)	22.77 (3.99)	-			
	S.Em±	CD@5%	1	S.Em±	CD@5%	-	S.Em±	CD@5%	ı			
Propagation (P)	0.62 (0.05)	1.80 (0.16)	-	0.81 (0.06)	2.34 (0.19)	-	0.79 (0.05)	2.29 (0.18)	-			
Month (M)	0.31 (0.02)	0.90 (0.08)	-	0.40 (0.03)	1.17 (0.09)	-	0.39 (0.02)	1.14 (0.09)	-			
(PxM)	0.88 (0.07)	2.55 (0.23)	-	1.15 (0.08)	3.32 (0.27)	-	1.12 (0.08)	3.25 (0.26)	-			

Treatment details: DAP: Days After Propagation, ()* Values in the parentheses are square root transformed values

P1: Hardwood cutting P2: Hardwood cutting + VAM P3: Air layering P4: Air layering + VAM M1:November P5: Patch budding P6:

Patch budding + VAM P7: Softwood grafting P8: Softwood grafting + VAM M2: February

Table 2: Impact of Propagation Practices, Temporal Factors, and VA Mycorrhizal Inoculation on fresh weight of roots at Sequential Intervals

	Fresh weight of root/ plant (g)										
Propagation	30 DAP			60 DAP			90 DAP				
(P)	M ₁	\mathbf{M}_2	Mean of propagation	M ₁	\mathbf{M}_2	Mean of propagation	M ₁	\mathbf{M}_2	Mean of propagation		
P_1	0 (0.70)*	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)		
P_2	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)		
P ₃	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0.72 (1.10)	0.36 (0.90)	0.62 (1.05)	0.80 (1.13)	0.71 (1.09)		
P ₄	0 (0.70)	0.82 (1.14)	0.41 (0.92)	0 (0.70)	1.89 (1.54)	0.94 (1.12)	1.02 (1.23)	2.36 (1.69)	1.69 (1.46)		
P ₅	2.72 (1.79)	3.79 (2.07)	3.25 (1.93)	4.10 (2.14)	5.60 (2.46)	4.85 (2.30)	4.72 (2.28)	5.91 (2.52)	5.31 (2.40)		
P ₆	3.07 (1.88)	4.22 (2.17)	3.64 (2.03)	5.15 (2.37)	6.16 (2.58)	5.66 (2.47)	5.54 (2.45)	6.17 (2.56)	5.85 (2.50)		
P ₇	3.13 (1.90)	2.93 (1.84)	3.03 (1.87)	3.79 (2.07)	5.09 (2.36)	4.44 (2.21)	5.90 (2.52)	5.73 (2.48)	5.81 (2.50)		
P_8	3.80 (2.07)	5.16 (2.37)	4.48 (2.22)	5.02 (2.34)	6.78 (2.69)	5.90 (2.52)	6.82 (2.70)	7.70 (2.86)	7.26 (2.78)		
Mean of month (M)	1.59 (1.31)	2.11 (1.46)		2.26 (1.47)	3.28 (1.77)		3.08 (1.70)	3.58 (1.83)			
	$S.Em\pm$	CD@5%		S.Em±	CD@5%		S.Em±	CD@5%			
Propagation (P)	0.27 (0.03)	0.32 (0.08)		0.42 (0.02)	0.49 (0.10)		0.18 (0.02)	0.54 (0.11)			
Month (M)	0.05 (0.01)	0.16 (0.04)		0.08 (0.01)	0.24 (0.05)		0.08 (0.01)	0.27 (0.05)			
(PxM)	0.15 (0.05)	0.45 (0.11)		0.22 (0.03)	0.69 (0.14)		0.26 (0.03)	0.76 (0.16)			

Treatment details: DAP: Days After Propagation ()* Values in the parentheses are square root transformed values P₁: Hardwood cutting P₂: Hardwood cutting + VAM P₃: Air layering, P₄: Air layering + VAM M₁: November P₅: Patch budding P₆: Patch budding + VAM P7: Softwood grafting P8: Softwood grafting + VAM M2: February

Table 3: Impact of Propagation Practices, Temporal Factors, and VA Mycorrhizal Inoculation on the length of the longest root at Sequential Intervals

	Length of longest root (cm)											
Method of		30 DAP			60 DAP		90 DAP					
propagation (P)	$\mathbf{M_1}$	\mathbf{M}_2	Mean of propagation	$\mathbf{M_1}$	\mathbf{M}_2	Mean of propagation	\mathbf{M}_1	M_2	Mean of propagation			
\mathbf{P}_1	0 (0.70)*	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)			
P_2	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)			
P ₃	0 (0.70)	0 (0.70)	0 (0.70)	0 (0.70)	2.23 (1.65)	1.11 (1.17)	3.40 (1.97)	2.63 (1.76)	3.01 (1.86)			
P ₄	0 (0.70)	2.83 (1.82)	1.41 (1.26)	0 (0.70)	4.63 (2.26)	2.31 (1.48)	4.50 (2.23)	5.86 (2.52)	5.18 (2.37)			
P ₅	16.40 (3.85)	23.93 (4.94)	20.16 (4.39)	24.30 (4.97)	27.53 (5.29)	25.91 (5.13)	25.40 (5.08)	28.66 (5.39)	27.03 (5.24)			
P ₆	25.83 (5.12)	30.53 (5.57)	28.18 (5.34)	27.10 (5.25)	32.20 (5.71)	29.65 (5.48)	30.33 (5.54)	32.66 (5.75)	31.50 (5.65)			
P ₇	28.53 (5.38)	27.33 (5.27)	27.93 (5.32)	34.26 (5.89)	28.90 (5.41)	31.58 (5.65)	32.20 (5.71)	30.36 (5.55)	31.28 (5.63)			
P ₈	33.60 (5.83)	31.86 (5.68)	32.73 (5.76)	35.66 (6.01)	32.63 (5.75)	34.15 (5.88)	36.63 (6.09)	34.50 (5.91)	35.56 (6.00)			
Mean of month (M)	13.04 (2.87)	14.56 (3.17)	-	15.16 (3.12)	16.01 (3.43)	-	16.55 (3.50)	16.83 (3.54)	-			
	S.Em±	CD@5%	-	S.Em±	CD@5%	-	S.Em±	CD@5%	-			
Propagation (P)	1.21 (0.17)	3.50 (0.51)	-	0.65 (0.06)	1.88 (0.17)	-	0.58 (0.04)	1.69 (0.16)	-			
Month (M)	0.60 (0.08)	1.75 (0.25)	-	0.32 (0.03)	0.94 (0.08)	-	0.29 (0.02)	0.84 (0.08)	-			
(PxM)	1.65 (0.24)	4.95 (0.70)	-	0.92 (0.09)	2.66 (0.24)	-	0.82 (0.06)	2.39 (0.23)	-			

Treatment details: DAP: Days After Propagation ()* Values in the parentheses are square root transformed values P₁: Hardwood cutting P₂: Hardwood cutting + VAM, P₃: Air layering, P₄: Air layering + VAM, M₁: November P₅: Patch budding, P₆: Patch budding + VAM, P7: Softwood grafting, P8: Softwood grafting + VAM M2: February

Table 4: Impact of Propagation Practices, Temporal Factors, and VA Mycorrhizal Inoculation percent survivability of propagated plants at 90 days after propagation

Method of propagation (P)	Survivability of propagated plants (%)						
ration of Propagation (1)	M_1	\mathbf{M}_2	Mean of propagation				
P ₁	0 (0.28)*	0 (0.28)	0 (0.28)				
\mathbf{P}_2	0 (0.28)	0 (0.28)	0 (0.28)				
P ₃	13.33 (21.36)	15.63 (23.04)	14.48 (22.20)				
\mathbf{P}_4	20.23 (26.59)	22.70 (28.40)	21.46 (27.50)				
P ₅	23.80 (29.18)	31.40 (34.07)	27.60 (31.62)				
P_6	28.76 (32.41)	42.86 (40.87)	35.81 (36.64)				
\mathbf{P}_7	72.50 (58.38)	72.93 (58.66)	72.72 (58.52)				
P_8	87.13 (69.03)	81.97 (64.90)	84.55 (66.97)				
Mean of month (M)	30.72 (29.69)	33.43 (31.31)	-				
	S.Em ±	CD@5%	-				
Propagation (P)	1.22 (0.90)	3.68 (2.60)	-				
Month (M)	0.61 (0.45)	1.84 (1.30)	-				
(PxM)	1.73 (1.27)	5.21 (3.68)	-				

Treatment details: DAP: Days After Propagation ()* Values in the parentheses are square root transformed values P₁: Hardwood cutting P₂: Hardwood cutting + VAM P₃: Air layering P₄: Air layering + VAM M₁: November P₅: Patch budding P₆: Patch budding + VAM P₇: Softwood grafting P₈: Softwood grafting + VAM M₂: February

Conclusion

Among the various vegetative propagation techniques tested, softwood grafting with VAM performed best for Jamun cv. AJG-85. Conducting grafting operations during November and February significantly improved root number, root length, root weight, and survival rate. The results clearly demonstrate that VAM inoculation enhances efficiency, offering a sustainable environmentally friendly approach to large-scale propagation of Jamun.

References

- 1. Bassanagowda. Synergistic effect of AM fungi in combination with bioformulations on germination, graft-take, growth and yield of mango [MSc thesis]. Dharwad: University of Agricultural Sciences; 2005.
- 2. Berta G, Trotta A, Hooker JE, Munpo M, Atkinson D, Govannetti M, *et al.* Arbuscular mycorrhizal induced changes to plant growth and root system morphology in *Prunus cerasifera*. Tree Physiology. 1994;15:281-293.
- 3. Dastur JP. Medicinal Plants of India and Pakistan. 2nd ed. Bombay: D.B. Taraporevala Sons; 1952.
- 4. Devachandra. Synergistic effect of AM fungi and bioformulations on graft take and tolerance to induced moisture stress in jamun [MSc thesis]. Dharwad: University of Agricultural Sciences; 2006.
- 5. Gunze CMB, Hennessy CMR. Effect of host-applied auxin on development of endomycorrhiza in cowpeas. Transactions of the British Mycological Society. 1980;74:247-251.
- Hartman HT, Kester DE. Plant Propagation: Principles and Practices. 4th ed. New Delhi: Prentice Hall of India; 1979. p. 407.
- 7. Hooker JF, Atkinson D. Application of computer-aided image analysis to studies of arbuscular endomycorrhizal fungal effects on plant root system morphology and dynamics. Agronomie. 1992;12:821-824.
- 8. Mulla BR, Angadi SG, Mathad JC, Patil VS, Mummigatti UV. Studies on softwood grafting in jamun (*Syzygium cumini* Skeels.). Karnataka Journal of Agricultural Sciences. 2011;24(3):366-368.
- 9. Santosh. Enhancement of germination, growth, grafttake and stress tolerance of mango rootstocks using bioformulations [MSc thesis]. Dharwad: University of Agricultural Sciences; 2004.
- 10. Singh IS, Srivastava AK. Genetic diversity—jamun (*Syzygium cuminii* Skeels.). Indian Horticulture. 2000;45(3):cover page II.
- Slankis V. Hormonal relationships in mycorrhizal development. In: Marx GC, Kozlowski TT, editors. Ectomycorrhizae. New York: Academic Press; 1975. p. 231-298.
- 12. Srivastava RP. Aonla propagation. Indian Horticulture. 1964;8(2):15-16.
- 13. Thaper AR. Farm Bulletin No. 42. New Delhi: ICAR; 1958.
- 14. Venkat GSK, Patil CP, Patil PB, Kulkarni MS. Response of Rangpur lime rootstock for different AM fungi on grafting success of Kagzilime. In: Thirteenth Southern Regional Conference on Mycorrhizae; 2004 Dec 3-5; Bijapur. College of Agriculture; 2004. p. 28.