
International Journal of Advanced Biochemistry Research 2025; SP-9(11): 257-262

ISSN Print: 2617-4693 ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; SP-9(11): 257-262 www.biochemjournal.com Received: 04-08-2025 Accepted: 08-09-2025

Gowdar SB College of Agriculture, Gangavathi, Koppal, Karnataka, India

Palaiah P ICAR-Krishi Vigyan Kendra, Hagari, Bellary, Karnataka, India

Badariprasad PR College of Agriculture, Gangavathi, Koppal, Karnataka, India

Narappa G ICAR-Krishi Vigyan Kendra, Gangavathi, Koppal, Karnataka, India

Corresponding Author: Gowdar SB College of Agriculture, Gangavathi, Koppal, Karnataka, India

Evaluation of different endowments Evaluation endowments Evaluat

Gowdar SB, Palaiah P, Badariprasad PR and Narappa G

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i11Sd.6224

Abstract

Plant diseases are among the major biotic constraints limiting crop productivity and contributing to the global food crisis. In rice cultivation, diseases pose a serious threat, causing both qualitative and quantitative yield losses. Among fungal diseases, sheath blight—caused by *Rhizoctonia solani*—is recognized as the second most destructive disease of rice after blast. A field experiment was conducted at the Agricultural Research Station, Gangavati, to evaluate the efficacy of Difenoconazole 25% EC against sheath blight of rice. The trial included six treatments, replicated four times in a Randomized Block Design (RBD). The performance of Difenoconazole 25% EC was compared with standard checks and an untreated control. Results revealed that Difenoconazole 25% EC was highly effective in reducing sheath blight severity. Application of Difenoconazole 25% EC at 250-500 ml/ha significantly decreased disease incidence and enhanced grain yield. The treatment with 500 ml/ha recorded the lowest Percent Disease Index (PDI) of 8.56 and 10.12, with corresponding grain yields of 67.3 q/ha and 66.0 q/ha during Kharif 2012 and 2013, respectively. The study clearly indicates that Difenoconazole 25% EC at 250-500 ml/ha is effective for managing sheath blight in rice and can be recommended for sustainable disease control.

Keywords: Difenoconazole 25% EC, fungicide, sheath blight, rice, Percent Disease Index (PDI)

Introduction

Globally, more than three billion people depend on rice as their staple food, contributing 50-80% of their daily caloric intake. In India, rice is cultivated under diverse agro-ecological conditions. Worldwide, rice occupies about 166 million hectares, producing approximately 750 million tonnes with an average productivity of 4.5 t/ha. India ranks first in rice area (43 million ha) and second in production (170 million tonnes), with a productivity of 3.9 t/ha (Pathak *et al.*, 2020) ^[61]. According to Anonymous (2022) ^[3], rice in India covers 46.38 Mha, with a production of 130.29 Mt and productivity of 2809 kg/ha.

Plant diseases are among the major biotic constraints affecting global crop productivity, often leading to food insecurity (Khoa *et al.*, 2017) ^[43]. In rice, nearly 50 different biotic agents including fungi, bacteria, viruses, nematodes, and insects can cause substantial yield losses. Among these, fungal pathogens pose the greatest threat to sustainable rice production (Webster and Gunnell, 1992) ^[75].

Of the fungal diseases affecting rice, sheath blight, caused by *Rhizoctonia solani*, is regarded as the second most important rice disease worldwide after blast (Pan *et al.*, 1999; Groth, 2005; Zhou and Jo, 2014) [60, 29, 79]. It is a major constraint in rice-growing regions and leads to significant economic losses (Ou, 1985; Savary *et al.*, 2000; Savary *et al.*, 2006) [59, 65, 64]. Yield losses due to sheath blight range from 20-50%, depending on the severity of infection (Groth and Bond, 2007; Margani and Widadi, 2018) [34, 53], and 5-10% in subtropical lowland rice cultivars of Asia (Savary *et al.*, 2006) [64].

The pathogen *R. solani* can infect rice plants at any growth stage (Dath, 1990) ^[20], with disease severity increasing as the crop matures (Singh *et al.*, 2004) ^[70]. The incidence is particularly high in early-maturing, semi-dwarf, highly tillering, and compact cultivars (Bhunkal *et al.*, 2015) ^[9]. It has been reported that a 1% increase in sheath blight severity results in a 0.38% (Roy, 1993) ^[63] to 0.74% (Savary *et al.*, 2006) ^[64] reduction in grain yield. Yield losses may reach 59-69% (Naidu, 1992; Singh *et al.*, 2016) ^[55, 69], depending on crop stage, disease intensity, and environmental factors (Singh *et al.*, 2004; Zheng *et al.*, 2013; Bhunkal *et al.*, 2015) ^[70, 78, 9].

In India alone, potential yield losses due to sheath blight range from 50-54.3% (Rajan, 1987; Roy, 1993; Chahal et al., 2003; Seebold, 2004) [62, 63, 14, 66]. The disease is especially prevalent in intensive rice cultivation systems where excessive use of nitrogenous fertilizers favors pathogen development the absence of effective host plant resistance against the sheath blight pathogen in rice, chemical control remains the primary management strategy (Naik et al., 2017) [56]. Although several integrated management approaches have been (Yellareddygari et al., 2014; Datta and Vurukonda, 2017) [77, ^{22]}, chemical control continues to be the most widely adopted and effective method for mitigating sheath blight incidence. Judicious use of fungicides provides a costeffective, practical, and reliable means of disease suppression (Bhuvaneshwari and Raju, 2012) [10].

Fungicide-based management of sheath blight has proven successful in most field trials (Kandhari *et al.*, 2003; Groth and Bond, 2006; Kumar *et al.*, 2013; Kumar and Veerabhadraswamy, 2014) [38, 40, 32, 46, 45]. Among available methods, foliar spray and seed treatment are the most common modes of fungicide application against *R. solani* (Singh *et al.*, 2019) [68]. Both systemic and non-systemic fungicides are used, but systemic fungicides are generally more effective due to their translocation ability within plant tissues (Naik *et al.*, 2017) [56].

Periodic field monitoring and timely fungicide application at the initial stages of infection, particularly around the booting stage, are critical for effective disease management in susceptible rice varieties (Singh *et al.*, 2016; Uppala and Zhou, 2018) [69, 74]. Numerous fungicides such as carbendazim, chloroneb, captafol, mancozeb, zineb, edifenphos, iprobenphos, thiophanate, and carboxin have shown significant efficacy in controlling sheath blight under field conditions (Dash and Panda, 1984; Kannaiyan and Prasad, 1984; Singh and Sinha, 2004) [17, 41, 67]. Among these, carbendazim, edifenphos, and iprobenphos are reported as the most effective chemicals (Roy, 1993) [63].

Given the economic importance and widespread prevalence of sheath blight, identifying highly effective and low-dose fungicidal options is essential for sustainable disease control. Fungicides remain a preferred choice among farmers because of their availability, ease of use, broad-spectrum activity, and consistent performance (Chou *et al.*, 2020) ^[15]. Consequently, chemical control continues to be one of the most successful strategies for reducing yield losses caused by rice diseases, including sheath blight and blast (Kumar *et al.*, 2021) ^[47].

To ensure long-term effectiveness, systematic evaluation of commercially available fungicides is necessary to develop practical recommendations based on both efficacy and cost (Ganesha Naik *et al.*, 2017) [27]. Therefore, the present study was undertaken to evaluate and screen the fungicide Difenconazole 25% EC at different concentrations against sheath blight (*Rhizoctonia solani*) in paddy under field conditions.

Materials and Methods

The field experiment was conducted during the *Kharif* seasons of 2012 and 2013 at the Agricultural Research Station, Gangavati, to evaluate the efficacy of Difenconazole 25% EC against sheath blight (*Rhizoctonia solani*) of rice. The trial was laid out in a Randomized Block Design (RBD) with six treatments and four replications. The

popular rice variety BPT-5204 was used, maintaining a spacing of 20 cm \times 10 cm in a 5 \times 5 m² plot. Standard agronomic practices recommended by the University of Agricultural Sciences, Raichur were followed throughout the crop growth period.

The fungicide treatments were evaluated along with standard checks and an untreated control to assess their effectiveness in managing sheath blight incidence and severity. The treatment details were as follows:

- T₁: Difenconazole 25% EC @ 250 ml/ha
- T₂: Difenconazole 25% EC @ 500 ml/ha
- T₃: Difenconazole 25% EC @ 1000 ml/ha
- T₄: Score @ 250 ml/ha
- Ts: Hexaconazole 5% SC @ 500 ml/ha
- T₆: Untreated control

The fungicides were applied as foliar sprays in the respective plots 45 days after transplanting (DAT), coinciding with the initial appearance of sheath blight symptoms. Two subsequent sprays were applied at 15-day intervals, the first at 60 DAT and the second at 75 DAT. Regular field inspections were carried out to monitor disease progression and evaluate treatment effectiveness.

Observations were recorded on disease severity in each treatment after three sprays as per the standard method. The incidence of disease were recorded on leaves as Per cent Disease Index (PDI) on the basis of scoring of the diseases as per the degree of severity was graded based on height of the plant portions affected by the disease and expressed as percentage of the total area as per the SES scale of rice (IRRI, 2013). In the present study, observations for disease incidence were recorded from the randomly selected twenty clumps / hills per plot for recording the disease severity in each replicated plots of the treatments. The observations were recorded on intensity of diseases were observed in each replicated plot for each treatment on 10th day after each spray. After 10 days of last spray, the final scoring of the disease incidence was recorded. Further, the scored data were converted into Per cent Disease Index (PDI) of plants using formula given by Wheeler (1969)

In order to record the yield, crop was harvested plot-wise from the individual replicated plots and average paddy yield was recorded and converted into q/ha.

The original PDI values were suitably transformed into arcsine transformed values and subjected to statistical analysis for drawing conclusions

Results and Discussion

It has been found that Difenconazole 25% EC @ 250-500 ml/ha reduced the sheath blight infection more than rest of the treatments and improved the rice yield. The fungicide Difenconazole 25% EC was found to be effective in reducing the severity of the sheath blight disease. The treatment Difenconazole 25% EC @ 500 ml/ha recorded least sheath blight disease incidence of 8.56 per cent PDI and was significantly superior over control treatment (44.64%). The same treatment was statistically and significantly on par with Difenconazole 25% EC @ 250 ml/ha and Difenconazole 25% EC @ 750 ml/ha treatments with PDI of 8.85 and 9.36 per cent, respectively. All other

treatments were inferior to these treatments though significantly superior to the untreated check (44.64%). Among other treatments Hexaconazole 5% EC @ 500ml/ha was found least effective with higher sheath blight (18.33%) (Table-1). Results of the second season showed similar trends with the treatment Difenconazole 25% EC @ 500 ml/ha recorded least PDI of sheath blight disease incidence (10.12%) and was significantly superior over control treatment (48.56%). The same treatment was statistically and significantly on par with Difenconazole 25% EC @ 250 ml /ha and Difenconazole 25% EC @ 750ml/ha treatments with PDI of 10.43 and 10.50 per cent, respectively. All other treatments were inferior to these treatments though significantly superior to the untreated check (48.56%). Among the treatments evaluated, Hexaconazole 5% EC @ 500 ml/ha was found to be the least effective, recording a higher sheath blight incidence of 21.00% (Table 2). Similar observations have been reported by several researchers, including Dubey and Toppo (1997) [25], Tiohuat (1997) [72], Akter et al. (2001) [1], Ali and Archer (2003) [2], Nath et al. $(2005)^{[57]}$, Bag $(2009)^{[4]}$, Lenka and Bhaktavatsalam $(2011)^{[52]}$, Neha *et al.* $(2017)^{[58]}$, Laxmikant *et al.* $(2017)^{[50]}$, Swamy et al. (2009) [71], Bhuvaneswari and Raju (2012) [10], Goswami *et al.* (2012) [28], Kumar *et al.* (2014) [45], Hegde (2015) [35], and Kumar *et al.* (2018) [48]. The promising effects of Hexaconazole 5% SC and Propiconazole 25% EC were also corroborated by Nagaraju *et al.* (2017) ^[54].

Although both systemic and non-systemic fungicides are used in the chemical management of sheath blight, systemic fungicides generally provide more effective and sustained control of the disease (Naik *et al.*, 2017) ^[56]. Timely application, particularly at the booting stage, is critical for effective disease suppression (Singh *et al.*, 2016; Uppala and Zhou, 2018) ^[69, 74]. Chemical fungicides such as Flutolanil, Carbendazim, Iprobenfos, Mancozeb, Thifluzamide, and Validamycin have been found to offer effective control against sheath blight under different agroclimatic conditions.

However, the continuous and indiscriminate use of a single fungicide with a similar mode of action over time can lead to the development of fungicide resistance in the pathogen population (Uppala and Zhou, 2018) [74]. The present findings align with earlier research, reinforcing that timely and judicious application of potent fungicides remains the most reliable approach for managing sheath blight disease. Effective fungicide use is essential to prevent disease spread and sustain productivity, given the wide availability of commercial fungicides for rice disease management worldwide.

Yield: A significant difference in yield levels was observed

between the treated and untreated plots, corresponding to the varying degrees of reduction in sheath blight incidence. The maximum grain yield of 67.3 q/ha was recorded with Difenconazole 25% EC @ 500 ml/ha, followed by the same fungicide applied at 250 ml/ha (66.5 q/ha) and 750 ml/ha (66.0 q/ha). These treatments were statistically superior and more effective than the remaining fungicidal treatments. The lowest grain yield (44.6 q/ha) was recorded in the untreated control (Table 1).

Similarly, during the second cropping season, the highest grain yield (66.0 q/ha) was again obtained with Difenconazole 25% EC @ 500 ml/ha, followed by **250** ml/ha (65.8 q/ha) and 750 ml/ha (65.5 q/ha), while the untreated control recorded the lowest yield (41.4 q/ha) (Table 2). Across both seasons, fungicide treatments not only reduced sheath blight severity but also minimized yield losses effectively.

These findings are in agreement with previous studies demonstrating the efficacy of azoxystrobin (Groth, 2005) [29], and azoxystrobin + flutolanil (Groth and Bond, 2007) [34] in reducing sheath blight and minimizing yield reduction. Fungicidal application has been widely reported to enhance crop yield by reducing disease load (Biswas and Bag, 2010; Bag, 2011) [12, 5]. The current results are also consistent with those of Bhuvaneshwari and Raju (2012) [10] and Bag et al. (2016) [6], who reported that fungicide application improves rice yield primarily through reduced sheath blight severity. Fungicides limit pathogen establishment on rice sheaths and inhibit sclerotia formation through multiple mechanisms, such as damaging fungal cell membranes, inhibiting degrading enzymes (Kumar *et al.*, 2018) [48], disrupting energy production (Lal et al., 2017) [49], and interfering with sterol and chitin biosynthesis pathways (Singh et al., 2019) [68]. Upmanyu et al. (2002) [73] also observed that carbendazim effectively reduced sheath blight severity, leading to enhanced grain yield. Similarly, Nagaraju et al. (2017) [54] reported that Carbendazim 50% WP and Validamycin 3% L performed on par, both recording higher yields under field conditions.

Further studies by Uppala and Zhou (2018) [74], Behera *et al.* (2022) [7], and Kabdwal *et al.* (2023) [37] confirmed the effectiveness of fungicides such as Azoxystrobin (alone or in combination with Propiconazole), Trifloxystrobin + Propiconazole, Pyraclostrobin, and Flutolanil against sheath blight of rice, all contributing to increased grain yield. Overall, chemical control remains the most practical and effective management approach, being applicable across different regions and varieties. It not only reduces disease incidence and spread but also significantly enhances crop productivity.

 Table 1: Effect of Diffenconazole 25% EC on sheath blight of rice during Kharif - 2012

Sl. No.	Treatment	Dose Formulation (ml/ha)	Sheath blight (PDI)			Yield
			Initial score	10 days after I spray	10 days after II spray	(Q/ha)
1	Difenoconazole 25% EC	250	4.71 (12.53)	6.44 (14.58)	8.85 (17.31)	66.5
2	Difenoconazole 25% EC	500	4.33 (12.01)	5.44 (13.44)	8.56 (17.01)	67.3
3	Difenoconazole 25% EC	1000	4.56 (12.33)	6.89 (15.11)	12.87 (21.02)	57.9
4	Difenoconazole 25% EC	750	4.67 (12.47)	5.89 (13.97)	9.36 (17.55)	66.0
5	Hexaconazole 5% SC	500	5.05 (12.98)	14.66 (22.51)	18.33 (25.35)	54.9
6	Untreated check	-	5.23 (13.24)	30.33 (33.42)	44.64 (41.92)	44.6
	CD at 5% level	-	NS	2.48	2.74	1.24

^{*} Figures in the parentheses represent arcsine transformed values

Table 2: Effect of Diffenconazole 25% EC on sheath blight of rice during *Kharif* - 2013

Sl. No.	Treatment	Dose Formulation (ml/ha)	Sheath blight (PDI)			Yield
			Initial score	10 days after I spray	10 days after II spray	(Q/ha)
1	Difenoconazole 25% EC	250	5.00 (12.92)	7.34 (15.74)	10.43 (18.86)	65.8
2	Difenoconazole 25% EC	500	5.37 (13.40)	7.03 (15.39)	10.12 (18.57)	66.0
3	Difenoconazole 25% EC	1000	5.74 (13.86)	8.98 (17.46)	14.43 (22.32)	56.7
4	Difenoconazole 25% EC	750	5.19 (13.16)	7.69 (16.12)	10.50 (18.93)	65.5
5	Hexaconazole 5% SC	500	5.37 (13.40)	16.53 (24.01)	21.00 (27.29)	54.0
6	Untreated check	-	5.56 (13.63)	35.63 (36.67)	48.56 (44.19)	41.4
	CD at 5% level	-	NS	3.09	3.35	1.58

^{*} Figures in the parentheses represent arcsine transformed values

Conclusion

The fungicide Difenconazole 25% EC at different doses were evaluated during *Kharif* 2012 and 2013 at Krishi Vigyan Kendra / Agriculture Research Station, Gangavati was found effective in reducing the severity of Rice sheath blight and thereby increased the grain yield. Results clearly indicated that Difenconazole 25% EC @ 250 and 500 ml/ha dose can effectively control sheath blight of Rice. This dose was at par with higher dose and resulted better yield than other treatments. Hence the use of Difenconazole 25% EC @ 250-500 ml/ha is suggested for the control of sheath blight disease in Rice crop.

References

- Akter S, Mian MS, Mia MAT. Chemical control of sheath blight disease (*Rhizoctonia solani*) of rice. Bangladesh Journal of Plant Pathology. 2001;17:35-38.
- 2. Ali MS, Archer SA. Evaluation of some new fungicides against sheath blight disease of rice caused by *Rhizoctonia solani*. Bangladesh Journal of Plant Protection. 2003;19:13-20.
- 3. Anonymous. Agriculture statistics at a glance. Ministry of Agriculture; 2022. p. 28.
- Bag MK. Efficacy of a new fungicide Trifloxystrobin 25% + Tebuconazole 50% 75WG against sheath blight (*Rhizoctonia solani* Kühn) of rice. Journal of Crop and Weed. 2009;5(1):221-223.
- 5. Bag MK. Performance of a new generation fungicide Metominostrobin 20SC against sheath blight disease of rice. Journal of Mycopathological Research. 2011;49(1):167-169.
- Bag MK, Yadav M, Mukherjee AK. Bioefficacy of strobilurin-based fungicides against rice sheath blight disease. Transcriptomics. 2016;4:128.
- 7. Behera SK, Beura S, Rout MR. Efficacy of fungicides for the management of sheath blight of rice. International Journal of Research Trends and Innovation. 2022;7:119-122.
- Baro J, Vinayaka KS, Chaturvedani AK, Rout S, Sheikh IA, Waghmare GH, et al. Probiotics and prebiotics: The power of beneficial microbes for health and wellness. Microbiology Archives, an International Journal. 2019. https://doi.org/10.51470/MA.2019.1.1.1.
- Bhunkal N, Singh R, Mehta N. Assessment of losses and identification of slow blighting genotypes against sheath blight of rice. Journal of Mycology and Plant Pathology. 2015;45:285-292.
- 10. Bhuvaneswari V, Raju KS. Efficacy of new combination fungicide against rice sheath blight caused by *Rhizoctonia solani* (Kühn). Journal of Rice Research. 2012;5(1-2):57-61.

- 11. Parvin K. Anthocyanins and polyphenols in fruits and beverages: Comparative stability, bioavailability, and antioxidant mechanisms. Journal of Food and Biotechnology. 2023. https://doi.org/10.51470/FAB.2023.4.2.24.
- 12. Biswas A, Bag MK. Strobilurins in management of sheath blight disease of rice: A review. Pestology. 2010;34:23-26.
- 13. Thomas S, Mathew L. Plant growth promoting rhizobacteria enhancing vigour and yield: A brief review. Agriculture Archives: An International Journal. 2024.
- 14. Chahal KKS, Sokhi SS, Rattan GS. Investigation on sheath blight of rice in Punjab. Indian Phytopathology. 2003;56(1):22-26.
- 15. Chou C, Castilla N, Hadi B, Tanaka T, Chiba S, Sato I. Rice blast management in Cambodian rice fields using *Trichoderma harzianum* and a resistant variety. Crop Protection. 2020;135:104864.
- 16. Mohammed MHS, Khan MSA, Syed MM. Remote work culture: The impact of digital transformation on workforce productivity. Journal of e-Science Letters. 2023. https://doi.org/10.51470/eSL.2023.4.1.01.
- 17. Dash SC, Panda S. Chemical control of rice sheath blight disease. Indian Phytopathology. 1984;37:79-82.
- 18. Asma J, Subrahmanyam D, Krishnaveni D. The global lifeline: A staple crop sustaining two thirds of the world's population. Agriculture Archives. 2023.
- 19. Khan MSA, Syed MM, Mohammed MHS. Digital transformation and sustainable business models in the era of AI and automation. Journal of e-Science Letters. 2024. https://doi.org/10.51470/eSL.2024.5.3.1.
- 20. Dath PA. Sheath blight of rice and its management. New Delhi: Associated Publishing Co.; 1990. p. 129.
- 21. Naik DB, Rao BB, Kumar CU, Bhavani NL. Phytochemical analysis of different varieties of *Sorghum bicolor* in Telangana State, India. Agriculture Archives. 2022;1:16-20.
- 22. Datta A, Vurukonda SSKP. Rice sheath blight: A review of the unsung fatal disease. Trends in Biosciences. 2017;10:9216-9219.
- 23. Manjulatha G, Rajanikanth E. Emerging strategies in climate change mitigation and adaptation. Environmental Reports: An International Journal. 2022. https://doi.org/10.51470/ER.2022.4.2.06.
- 24. Saini PK, Sachan K, Surekha S, Islam NA. Rice tolerance to iron-deficient and iron-toxic soil conditions elucidate mechanisms and implications. Journal of Plant Biota. 2022.
- 25. Dubey SC, Toppo R. Evaluation of hexaconazole against sheath blight of rice caused by *Rhizoctonia solani*. Oryza. 1997;34:252-255.

- 26. Dash SK, Hansdah B, Baral JRRB, Sahoo SL. *Christella parasitica* (L.) Lev.: A potent pharmacological and pesticidal pteridophyte. Journal of Plant Biota. 2024.
- 27. Ganesha Naik R, Jayalakshmi K, Basavaraj Naik T. Efficacy of fungicides on the management of sheath blight of rice. International Journal of Current Microbiology and Applied Sciences. 2017;6(9):611-614.
- 28. Goswami S, Thind TS, Kaur R, Kaur M. Management of sheath blight of rice with novel action fungicides. Indian Phytopathology. 2012;65(1):92-93.
- 29. Groth DE. Azoxystrobin rate and timing effects on rice sheath blight incidence and severity and rice grain and milling yields. Plant Disease. 2005;89:1171-1174.
- 30. Ayana DT, Olika GI. Effect of mulching practice as soil moisture conservation for tomato (*Lycopersicon esculentum* Mill.) production under supplemental irrigation in Yabello district of Borana zone, Ethiopia. Acta Biology Forum. 2024;3(2):43-47.
- 31. Vidhya CS, Swamy GN, Das A, Noopur K, Vedulla M. Cyclic lipopeptides from *Bacillus amyloliquefaciens* PPL: Antifungal mechanisms and their role in controlling pepper and tomato diseases. Microbiology Archives, an International Journal. 2023.
- 32. Groth DE, Bond JA. Initiation of rice sheath blight epidemics and effect of application timing of azoxystrobin on disease incidence, severity, yield and milling quality. Plant Disease. 2006;90:1073-1076.
- 33. Syngkli RB, Vanlalruati V, Rai P. Study on the impact of *Mikania micrantha* Kunth on soil chemistry, crop yields, and forest canopy in an Indo-Burma biodiversity hotspot region. Environmental Reports. 2024;6(2):8-14.
- 34. Groth DE, Bond JA. Effect of cultivars and fungicides on rice sheath blight, yield, and quality. Plant Disease. 2007;91:1647-1650.
- 35. Hegde GM. Efficacy of tebuconazole 25% WG against blast and sheath blight diseases of rice in central western ghats of Uttar Kannada district. The Bioscan. 2015;10(4):1771-1775.
- 36. International Rice Research Institute (IRRI). Standard Evaluation Systems for Rice. Manila, Philippines: IRRI; 2013. p. 25-26.
- 37. Kabdwal BC, Sharma R, Kumar A, Kumar S, Singh KP, Srivastava RM, *et al.* Efficacy of different combinations of microbial biocontrol agents against sheath blight of rice caused by *Rhizoctonia solani*. Egyptian Journal of Biological Pest Control. 2023;33:29.
- 38. Kandhari J, Gupta RL. Efficacy of fungicides and resistance-inducing chemicals against sheath blight of rice. Journal of Mycological Research. 2003;41:67-69.
- 39. Mmayi MP, Musyimi DM. Effects of aluminium application and *Rhizobium* inoculation on aluminium accumulation, nodulation and yields of soybeans grown in Kenya. Agriculture Archives: An International Journal. 2025;4(2):7-19.
- 40. Kandhari J, Gupta RL, Kandari J. Efficacy of fungicides and resistance-inducing chemicals against sheath blight of rice. Journal of Mycological Research. 2003;41:67-69.
- 41. Kannaiyan S, Prasad NN. Effect of foliar spray of certain fungicides on the control of sheath blight of rice. Madras Agricultural Journal. 1984;71:111-114.

- 42. Akinrotimi AF. Postharvest practices and economic outcomes in the cocoa industry: Insights from licensed buying agents in Southwest Nigeria. Agriculture Archives: An International Journal. 2025.
- 43. Khoa ND, Xa TV, Hao LT. Disease reducing effects of aqueous leaf extract of *Kalanchoe pinnata* on rice bacterial leaf blight caused by *Xanthomonas oryzae* pv. *oryzae* involve induced resistance. Physiological and Molecular Plant Pathology. 2017;100:57-66.
- 44. Dahal B, Bag AG, Raut S. Integrated nutrient management for lentil cultivation: Improving soil fertility, nutrient content, and economic returns. Acta Biology Forum. 2024.
- 45. Kumar PMK, Veerabhadraswamy AL. Appraise a combination of fungicides against blast and sheath blight diseases of paddy (*Oryza sativa* L.). Journal of Experimental Biology and Agricultural Sciences. 2014;2(1):50-57.
- 46. Kumar PMK, Gowda SDK, Rishikant M, Kumar KN, Gowda PKT, Vishwanath K. Impact of fungicides on rice production in India. In: Fungicides Showcases of Integrated Plant Disease Management from Around the World. 2013. p. 77-98.
- 47. Kumar S, Kashyap PL, Mahapatra S, Jasrotia P, Singh GP. New and emerging technologies for detecting *Magnaporthe oryzae* causing blast disease in crop plants. Crop Protection. 2021;143:105473.
- 48. Kumar S, Kumari S, Rai SN, Sinha A. A new combination fungicide for the management of sheath blight, neck blast, brown spot, false smut, and grain discolouration diseases of paddy on farmers' field. Current Journal of Applied Science and Technology. 2018;31(3):1-9.
- 49. Lal MS, Sharma SK, Chakrabarti, Kumar M. Thifluzamide 24% SC: A new molecule for potato tuber treatment against black scurf disease of potato caused by *Rhizoctonia solani*. International Journal of Current Microbiology and Applied Sciences. 2017;6:370-375.
- Laxmikant R, Kumar M, Kumar S. Evaluation of effectiveness of fungicide sheath blight of paddy. Annals of Plant Protection Sciences. 2017;25(1):160-163.
- 51. Law JWF, Ser HL, Khan TM, Chuah LH, Pusparajah P, Chan KG, *et al.* The potential of *Streptomyces* as biocontrol agents against the rice blast fungus, *Magnaporthe oryzae* (*Pyricularia oryzae*). Frontiers in Microbiology. 2017;8:3.
- 52. Lenka S, Bhaktavatsalam G. Management of rice sheath blight through new fungicidal formulation in field. Indian Phytopathology. 2011;64:201-202.
- 53. Margani R, Widadi S. Utilizing *Bacillus* to inhibit the growth and infection by sheath blight pathogen, *Rhizoctonia solani* in rice. IOP Conference Series: Earth and Environmental Science. 2018;142:012070.
- 54. Nagaraju P, Naik MK. Evaluation of fungicides, botanicals and bio-agents against sheath blight of rice caused by *Rhizoctonia solani* Kühn under irrigated ecosystem. International Journal of Plant Protection. 2017;10:247-251.
- 55. Naidu VD. Influence of sheath blight of rice on grain and straw yield in some popular local varieties. Journal of Research, Assam Agricultural University. 1992;10:78-80.

- 56. Naik GR, Jayalakshmi K, Naik B. Efficacy of fungicides on the management of sheath blight of rice. International Journal of Current Microbiology and Applied Sciences. 2017;6(9):611-614.
- 57. Nath R, Laha SK, Bhattacharya PM, Dutta S. Evaluation of new fungicidal formulation for controlling the rice sheath blight disease. Journal of Mycopathological Research. 2005;43:113-115.
- 58. Neha KV, Naveenkumar R, Balabaskar P, Manikandan P. Evaluation of fungicides against sheath blight of rice caused by *Rhizoctonia solani* (Kühn). Oryza. 2017;54(4):470-476.
- 59. Ou SH. Rice Diseases. 2nd ed. Kew, Surrey: Commonwealth Mycological Institute; 1985. 380 p.
- 60. Pan X, Zou J, Chen Z, Lu J, Yu H, Li H. Tagging major quantitative trait loci for sheath blight resistance in a rice variety, Jasmine 85. Chinese Science Bulletin. 1999;44:1783-1789.
- 61. Pathak H, Tripathi R, Jambhulkar NN, Bisen JP, Panda BB. Eco-regional rice farming for enhancing productivity, profitability and sustainability. NRRI Research Bulletin No. 22. ICAR-National Rice Research Institute, Cuttack, India; 2020. p. 28.
- 62. Rajan CPD. Estimation of yield losses due to sheath blight of rice. Indian Phytopathology. 1987;40:174-177.
- 63. Roy AK. Sheath blight of rice in India. Indian Phytopathology. 1993;46:97-205.
- 64. Savary S, Teng PS, Willocquet L, Nutter FW. Quantification and modeling of crop losses: A review of purposes. Annual Review of Phytopathology. 2006;44:89-112.
- 65. Savary S, Willocquet L, Elazegui FA, Castilla N, Teng PS. Rice pest constraints in tropical Asia: Quantification and yield loss due to rice pests in a range of production situations. Plant Disease. 2000;84:357-369.
- 66. Seebold KW, Datnof JLE, Correa-Victoria FJ, Kucharek TA, Suyder GH. Effects of silicon and fungicides on the control of leaf and neck blast in upland rice. Plant Disease. 2004;88:253-258.
- 67. Singh R, Sinha AP. Comparative efficacy of local bioagents, commercial bioformulation and fungicide for the management of sheath blight of rice under glass house conditions. Indian Phytopathology. 2004;57:494-406
- 68. Singh P, Mazumdar P, Harikrishna JA, Babu S. Sheath blight of rice: A review and identification of priorities for future research. Planta. 2019;250:1387-1407.
- 69. Singh R, Sunder S, Kumar P. Sheath blight of rice: Current status and perspectives. Indian Phytopathology. 2016;69:340-351.
- 70. Singh SK, Shukla V, Singh H, Sinha AP. Current status and impact of sheath blight in rice (*Oryza sativa* L.) a review. Agricultural Reviews. 2004;25(4):289-297.
- 71. Swamy HN, Syed Sannaulla, Kumar MD. Screening of new fungicides against rice sheath blight disease. Karnataka Journal of Agricultural Science. 2009;22(2):448-449.
- 72. Tiohuat AC. Hexaconazole (Anvil 5 SC), a broad spectrum systemic fungicide for disease control in some plantation crops. Planter. 1997;73(852):129-135.
- 73. Upmanyu S, Gupta SK, Shyam KR. Innovative approaches for the management of root rot and web

- blight (*Rhizoctonia solani*) of French bean. Journal of Mycology and Plant Pathology. 2002;32(3):317-331.
- 74. Uppala S, Zhou XG. Field efficacy of fungicides for management of sheath blight and narrow brown leaf spot of rice. Crop Protection. 2018;104:72-77.
- 75. Webster RK, Gunnell PS. Compendium of Rice Diseases. St Paul, MN: American Phytopathological Society; 1992. p. 62.
- 76. Wheeler BEJ. An Introduction to Plant Diseases. London: John Wiley and Sons Ltd; 1969. p. 254.
- 77. Yellareddygari SKR, Reddy MS, Kloepper JW, Lawrence KS, Fadamiro H. Rice sheath blight: A review of disease and pathogen management approaches. Journal of Plant Pathology and Microbiology. 2014;5:1000241.
- 78. Zheng A, Lin R, Zhang D, Qin P, Xu L, Ai P, *et al*. The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nature Communications. 2013;4:1424.
- Zhou XG, Jo YK. Disease management. In: Way MO, McCauley GM, Zhou XG, Wilson LT, Brandy M, editors. Texas Rice Production Guidelines. Texas Rice Research Foundation; 2014. p. 44-57.