

ISSN Print: 2617-4693 ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; 9(11): 61-66 www.biochemjournal.com Received: 13-09-2025 Accepted: 16-10-2025

Priyanshu Pawar

Ph.D. Scholar, Department of Agricultural Entomology, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India

Nawale Jayant Shyamrao

SRF, Department of Agricultural Entomology, Mahatma Phule Krishi Vidyapeeth Rahuri, Maharashtra, India

DK Narwade

Ph.D. Scholar, Department of Agricultural Entomology, Mahatma Phule Krishi Vidyapeeth Rahuri, Maharashtra, India

Sunita Yadav

Ph.D. Scholar, Department of Agricultural Entomology, Jawaharlal Nehru Krishi Vishwavidyalaya, Jabalpur, Madhya Pradesh, India

Pooja Kumari

Ph.D. Scholar, Department of Agricultural Entomology, CCS HAU, Hisar, Haryana, India

Tejaswee Kattumulla

M.Sc. Scholar, Department of Agricultural Entomology, Kerala Agricultural University, Kerala India

Corresponding Author: Nawale Jayant Shyamrao SRF, Department of Agricultural Entomology, Mahatma Phule Krishi Vidyapeeth Rahuri, Maharashtra, India

A symbiont-mediated adaptation of aphids to environmental change

Priyanshu Pawar, Nawale Jayant Shyamrao, DK Narwade, Sunita Yadav, Pooja Kumari and Tejaswee Kattumulla

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i11a.6178

Abstract

Aphids (Hemiptera: Aphididae) are a globally important group of herbivores whose ecology and evolutionary trajectories are strongly shaped by intimate associations with bacterial endosymbionts. Their success as pests is not solely due to their high reproductive potential and phenotypic plasticity but is also intricately tied to associations with bacterial endosymbionts. The obligatory symbiont Buchnera aphidicola, which is maintained by all aphids, is vital to host nutrition and thermal physiology because it supplies crucial amino acids that are absent in phloem sap. Furthermore, a large number of species are home to facultative (secondary) symbionts, including Serratia symbiotica, Regiella insecticola, and Hamiltonella defensa. These facultative partners can confer conditional benefits, including enhanced tolerance to heat stress, protection against parasitoid wasps and microbial pathogens, and shifts in host plant utilization. In a rapidly changing environment — driven by warming, altered seasonality, and anthropogenic landscape change — symbiont composition, density, and genotype can alter aphid fitness and population dynamics, sometimes in context-dependent and genotype-specific ways. This review synthesizes current knowledge on how aphid-symbiont partnerships mediate adaptation to abiotic (temperature) and biotic (parasitoids, predators, host plants) stressors, discusses mechanistic bases (metabolic provisioning, toxin production, immune modulation), highlights ecological and evolutionary consequences, and outlines key gaps and future research directions, including implications for pest management.

Keywords: Aphids, *Buchnera*, *Hamiltonella*, *Regiella*, facultative symbionts, climate change, adaptation

Introduction

The rapid expansion of insect pest populations due to climate change poses a significant challenge to contemporary agriculture and food security. This escalating issue underscores the urgent need for innovative monitoring technologies and comprehensive research to uncover the underlying mechanisms of pest proliferation and to design effective, sustainable management strategies (Subedi et al., 2023a) [33]. Among insect pests, aphids (Hemiptera: Aphididae) constitute an ancient yet remarkably adaptable group. Their rapid asexual reproduction has enabled them to thrive globally, emerging as major pests across agricultural, horticultural, and forestry ecosystems, and leading to annual crop losses amounting to billions of US dollars (Skvarla et al., 2017) [32]. The prevalence of widespread synthetic pesticide resistance among these pests further complicates their control, highlighting the urgent need to explore alternative management approaches (Loxdale et al., 2020) [19]. Abiotic factors, particularly temperature, play a crucial role in shaping insect population dynamics, as they significantly impact reproduction, survival rates, fecundity, number of generations (voltinism), interactions with host plants, predator-prey relationships, and patterns of dispersal (Sunil et al., 2023) [34]. Climate change intensifies these influences; however, only a limited number of studies have systematically examined the range expansion and population dynamics of aphid pest species in response to changing climatic conditions (Subedi et al., 2023; Wu et al., 2020) [33, 38]. Among these, the corn leaf aphid, Rhopalosiphum maidis (Fitch), is recognized as a major global pest of cereal crops, particularly maize (Zea mays L.). In recent years, its populations have markedly increased across European maizegrowing regions including Germany, Poland, Hungary, and Romania resulting in substantial economic losses due to extensive crop damage (Blackman and Eastop, 2000; Csorba et al.,

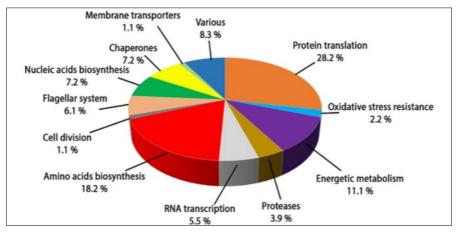
2021, 2022; Emden and Harrington, 2007, 2017) [2, 35]. Currently, control measures for this pest rely largely on synthetic insecticides and hymenopterous parasitoids, with no fully effective monitoring or alternative control technologies yet available (Van Emden and Harrington, 2017) [35]. An additional layer of complexity in aphid population dynamics involves their close associations with bacterial endosymbionts. These symbionts, both obligate Buchnera aphidicola) and facultative (e.g., Hamiltonella defensa, Regiella insecticola, Serratia symbiotica, Wolbachia spp.), contribute to aphid adaptation by influencing thermal tolerance, host plant utilization, defense against natural enemies, and nutrient metabolism (Douglas, 2016; Zepeda-Paulo and Lavandero, 2021) [11, 39]. For example, B. aphidicola is implicated in aphid heat sensitivity through modulation of small heat shock proteins, while S. symbiotica enhances tolerance to heat stress and aids in nutrient processing (Montllor et al., 2002; Zhang et al., 2019; Skaljac et al., 2019) [22, 40, 31]. Similarly, facultative symbionts such as R. insecticola and H. defensa provide selective advantages against parasitoids or influence host plant performance, highlighting their role in aphid ecological success (Oliver et al., 2005; Ramírez-Cáceres et al., 2019) [25, 27].

Understanding the interplay between abiotic stressors, such as elevated temperatures under climate change, and biotic factors, including symbionts and pathogens, is therefore critical for developing sustainable aphid management strategies. In this review, we consolidate existing research on how aphids respond to heat stress and examine the influence of bacterial endosymbionts in shaping these responses, with particular emphasis on the economically important corn leaf aphid, *R. maidis*. By integrating insights on host–symbiont interactions and environmental influences, we aim to highlight potential avenues for improving aphid control in a warming world.

Types of aphid endosymbionts and their basic roles Obligate symbiont: *Buchnera aphidicola*

Obligate symbionts are essential for the survival of their hosts and are vertically transmitted from mother to offspring. Among these, the obligate endosymbiont $Buchnera\ aphidicola\ (Enterobacterales: Erwiniaceae)$ belongs to the γ -proteobacteria and plays a vital role in maintaining host physiology (Bright, M. and Bulgheresi, S., 2010) $^{[3]}$. This obligate endosymbiotic bacterium supplies its host with vital nutrients, vitamins, and other metabolites that the host cannot synthesize independently, and may also

enhance the host's efficiency in nutrient assimilation and overall feeding performance (Salem, H. and Kaltenpoth, M., 2022) [28]. Variation among *Buchnera* strains and their densities within hosts influences host physiology and can affect tolerance to temperature stress through differences in protein stability, gene expression, and metabolic support. *Buchnera* is thermally sensitive, and that both *Buchnera* genotype and titre modulate aphid performance under heat stress.


Facultative (secondary) symbionts

Facultative γ-proteobacterial symbionts, unlike obligate ones, are not essential for all hosts and can influence their hosts in diverse ways—yielding beneficial, detrimental, or neutral outcomes (Guo, J. *et al.*, 2017) ^[14]. Overall, these symbionts are not required for the host's normal growth, development, or reproductive processes (Douglas, A. E., 2015) ^[10]. Facultative symbionts contribute to the acquisition and transmission of key ecological traits in their hosts through horizontal gene transfer (HGT). These traits include enhanced defense against parasitoids, improved thermal tolerance (Montllor *et al.*, 2002; Russell and Moran, 2006) ^[22, 16], and increased resistance to fungal pathogens (Scarborough *et al.*, 2005; Łukasik *et al.*, 2015) ^[29, 20]. Major examples include:

- Hamiltonella defensa often confers protection against parasitoid wasps, a benefit that in many systems depends on associated bacteriophages (APSE) that encode toxins. The protection is strain-specific and can show high specificity toward particular parasitoid species.
- Regiella insecticola linked to altered host plant use and protection against some natural enemies; effects vary by strain and aphid species.
- Serratia symbiotica, Arsenophonus, Spiroplasma and others — can affect thermal tolerance, metabolism, resistance to pathogens, or interact with host ecology in complex ways.

Mechanisms by which symbionts mediate adaptation Nutritional and metabolic provisioning

Buchnera synthesizes essential amino acids (e.g., tryptophan, leucine) and vitamins, directly altering host nutrition and fecundity. Changes in Buchnera gene expression or numbers can shift aphid developmental rates and reproduction under resource limitation or thermal stress.

Fig 1: Shows Functional classification of all *B. aphidicola* proteins

Thermal tolerance and temperature sensitivity

Symbionts affect aphid responses to temperature extremes through multiple mechanisms. To begin with, Buchnera proteins exhibit reduced thermal stability when compared to their homologous counterparts found in closely related freeliving bacterial species (van Ham et al., 2003) [36]. Second, similar to other insect endosymbionts (Kupper et al., 2014) [18], Buchnera continuously produces elevated levels of heat shock proteins, including GroEL and DnaK, which play a crucial role in restoring misfolded proteins during periods of thermal stress (Fares et al., 2002) [13]. Functional expression of Buchnera enzymes in Escherichia coli requires either GroEL overexpression (Huang et al., 2008) [15] or growth at lower temperatures (Price and Wilson, 2014) [12]. Thirdly, specific Buchnera genotypes associated with the pea aphid (Acyrthosiphon pisum) display pronounced sensitivity to elevated temperatures, which has been linked to a recurrent mutation in the heat shock promoter region of ibpA, a gene encoding a universal small heat shock protein (Burke et al., 2010; Dunbar et al., 2007) [4, 12]. Aphids possessing this particular haplotype experience a substantial or complete loss of *Buchnera* populations when exposed to heat stress, leading to a marked decline in reproductive capacity; experimental substitution of this haplotype has been shown to improve thermal tolerance (Moran and Yun, 2015) [23]. Furthermore, the facultative symbiont Serratia symbiotica has been found to alleviate heat-induced damage in A. pisum (Montllor et al., 2002; Russell and Moran, 2006) [22, 16], most likely by stabilizing Buchnera populations and synthesizing protective metabolites (Burke et al., 2010) [5]. Finally, in some cases, Buchnera densities in aphids decline at elevated temperatures (Chen et al., 2009) [7].

Defensive toxins and bacteriophages

Protection against parasitoids is commonly mediated by symbiont-encoded toxins or toxin-encoding bacteriophages

(e.g., APSE associated with *Hamiltonella*). The presence/absence and genotype of APSE phages across *Hamiltonella* strains determines efficacy and specificity of defense against different parasitoid species. This genomic mosaicism explains why symbiont-conferred resistance often displays strong genotype × genotype specificity.

Immune and physiological modulation

Some symbionts influence host immune function—such as haemocyte counts or immune gene expression—affecting susceptibility to pathogens and natural enemies, with these effects often changing under environmental stress. Such immunomodulation can create trade-offs between growth, reproduction, and defense. Recent research indicates that certain facultative symbionts engage in direct interactions with the aphid's innate immune system. For instance, aphids harboring specific strains of Regiella display a reduction in circulating immune cell counts (Schmitz et al., 2012) [30] along with decreased expression and protein levels of phenoloxidase, a key enzyme in immune defense (Nichols et al., 2021; Luo et al., 2020) [24, 21]. Moreover, RNAi-mediated suppression of phenoloxidase (PO1) has been shown to elevate Regiella densities (Nichols et al., 2021) [24]. Similarly, certain strains of the facultative symbiont Hamiltonella defensa can proliferate to high densities while concurrently downregulating host immune-related genes (Kaech et al., 2021) [17].

Behavioural and chemical ecology changes

Symbionts can change aphid behavior (e.g., feeding, movement) and plant volatile emission profiles, potentially altering attraction of natural enemies or vectors and feeding preferences for host plants (Fig.2). Such changes can influence transmission of plant viruses and the ecological networks aphids inhabit.

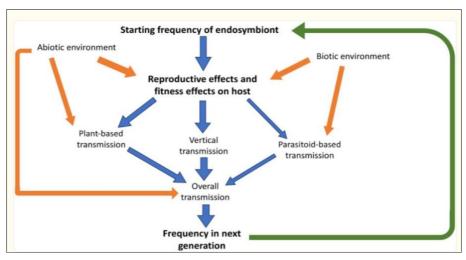


Fig 2: Endosymbiont population dynamics in natural ecosystems.

Fig 2. In natural ecosystems, the dynamics of endosymbiont populations are governed by factors that affect their transmission, replication, and overall influence on host fitness. These interactions are intricately connected to both abiotic and biotic components of the surrounding environment.

Context dependence: environment \times symbiont \times host interactions

Symbiont effects are rarely absolute; instead, they vary with abiotic context (temperature, humidity), biotic context

(parasitoid community composition, predators, host plant species), and host/symbiont genotype. Key patterns from experiments and field surveys include:

Temperature can flip costs/benefits: Rising temperatures can alter the balance of costs and benefits associated with harboring facultative symbionts. In some cases, warming reduces both the protective advantages and the reproductive penalties of carrying such microbes, while in others, heat stress compromises Buchnera function, lowering overall aphid performance. Consequently, climate change can

unpredictably reshape the selective pressures influencing symbiont prevalence. For example, fluctuations in temperature can modify the level of parasitoid resistance conferred by *Hamiltonella defensa* in aphids and by *Spiroplasma* in drosophilids (Bensadia *et al.*, 2006) ^[1], as well as influence the antiviral protection mediated by *Wolbachia* in drosophilid hosts (Chrostek *et al.*, 2020) ^[6]. Similarly, symbiont-driven detoxification processes that contribute to insecticide resistance—such as *Wolbachia* in planthoppers—can be thermally sensitive (Zhang *et al.*, 2021) ^[41].

- defensa provides resistance against parasitoid wasps by producing phage-encoded toxins integrated into its genome. However, this protection is often highly specific: strains that defend against a dominant parasitoid species in one region may fail to provide benefits elsewhere, shaping geographic variation in symbiont frequencies. In addition, harboring Hamiltonella can impose physiological costs, such as reduced longevity or increased mortality in some aphid species (Wernegreen, 2012) [37]. Different Hamiltonella genotypes also vary in their effectiveness against particular parasitoid species, further influencing local host–parasite dynamics (Moran and Yun, 2015) [23].
- Trade-offs and pleiotropy: Symbiont conferred resistance can come at the expense of growth or reproduction under some conditions; these trade-offs influence the maintenance and spread of symbionts across environmental gradients.

Eco-Evolutionary Perspectives on Aphid Management and Conservation

Symbiont-mediated adaptation fundamentally reshapes strategies for managing aphid populations, particularly when evaluated through the interconnected lenses of environmental, regulatory, management, and stochastic factors (Fig.3). Defensive endosymbionts, such as

Hamiltonella defensa, can significantly reduce the efficacy of biological control agents like parasitoid wasps by conferring resistance traits to their hosts. These protective effects may be amplified or diminished depending on abiotic conditions; for example, elevated temperatures associated with climate change can interact with symbiont physiology to alter both the strength and stability of defensive benefits. Similarly, changes in cropping systems and reduced plant diversity can shift the balance between aphids, their symbionts, and natural enemies, further complicating biological control outcomes. Agricultural management practices are equally influential, as inputs like fertilizers, pesticides, and irrigation not only directly impact aphid population dynamics but also shape the distribution, abundance, and functional performance of their associated symbionts. Crop rotation and intercropping strategies may alter host plant availability and indirectly shape symbiontmediated fitness outcomes. On a broader scale, policy and regulatory frameworks-such as pesticide bans, the promotion of integrated pest management (IPM), or incentives for habitat diversification—intervene to shape the ecological context in which aphid-symbiont interactions unfold. Stochastic forces, including extreme climatic events, novel invasive weeds, or unexpected pathogen outbreaks, add additional layers of complexity and unpredictability. In light of these interacting pressures, pest management

demands a systems-based approach that explicitly incorporates the ecological and evolutionary roles of endosymbionts. Promising avenues include manipulating landscape features to enhance natural enemy efficacy, integrating symbiont surveillance into pest monitoring programs, and developing novel interventions that disrupt symbiont-derived defenses, such as bacteriophage-targeted tools. By combining ecological, regulatory, and biological insights, future management strategies will be better equipped to anticipate shifts in aphid populations, safeguard biological control efficacy, and promote the long-term resilience and sustainability of agroecosystems.

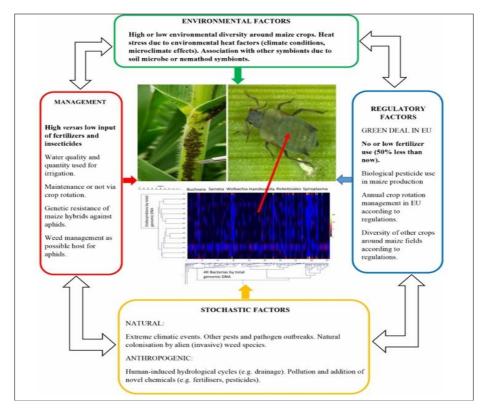


Fig 3: Schematic representation of the main factors influencing maize—aphid—symbiont interactions.

Conclusions

Bacterial endosymbionts are increasingly recognized as pivotal drivers of aphid responses to environmental change. The obligate symbiont Buchnera aphidicola plays a vital role in aphid nutrition by synthesizing essential amino acids and vitamins that are lacking in the phloem sap on which the host feeds. However, Buchnera is also thermally fragile, and its loss or reduced functionality at elevated temperatures can directly constrain aphid performance and limit range expansion under warming climates. Similarly, facultative (secondary) symbionts such as Hamiltonella defensa, Regiella insecticola, and Serratia symbiotica provide context-dependent advantages that go beyond nutritional support. These benefits include increased resistance to parasitoid wasps and fungal pathogens, as well as, in certain cases, improved tolerance to thermal stress and adaptability to different host plants. Nevertheless, such benefits often come at fitness costs, and their expression is strongly context-dependent, varying across environments, aphid genotypes, and community interactions. As global change accelerates through climate warming, altered precipitation regimes, intensified agriculture, and habitat modification, the selective pressures governing symbiont maintenance and spread are expected to shift. This will generate complex ecoevolutionary dynamics in aphid populations, shaping not only their abundance and distribution but also their interactions with natural enemies and crops. For pest management, these dynamics pose both challenges and opportunities: defensive symbionts may undermine classical biological control strategies, yet symbiont biology itself may offer novel intervention targets. To anticipate and guide these outcomes, future research must integrate comparative genomics, mechanistic physiology, community ecology, and predictive modeling. Such interdisciplinary approaches will be essential to understand, forecast, and ultimately manage the consequences of symbiont-mediated adaptation in aphids under rapid environmental change.

Author Declarations

The authors declare that they have no known conflicts of interest associated with this publication.

References

- 1. Bensadia F, Boudreault S, Guay JF, Michaud D, Cloutier C. Aphid clonal resistance to a parasitoid fails under heat stress. Journal of Insect Physiology. 2006;52(2):146–157.
- 2. Blackman RL, Eastop VF. Aphids on the world's crops: an identification and information guide. 2nd ed. Chichester: Wiley; 2000.
- 3. Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nature Reviews Microbiology. 2010;8(3):218–230.
- 4. Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. The ISME Journal. 2010;4(2):242–252.
- 5. Burke GR, McLaughlin HJ, Simon JC, Moran NA. Dynamics of a recurrent *Buchnera* mutation that affects thermal tolerance of pea aphid hosts. Genetics. 2010;186(1):367–372.
- 6. Chrostek E, Martins N, Marialva MS, Teixeira L. *Wolbachia*-conferred antiviral protection is determined by developmental temperature. MBio. 2021;12(5):e010–1128.

- 7. Chen CY, Lai CY, Kuo MH. Temperature effect on the growth of *Buchnera* endosymbiont in *Aphis craccivora* (Hemiptera: *Aphididae*). Symbiosis. 2009;49(1):53–59.
- 8. Csorba AB, Balint J, Felföldi T, Szabo A, Fora CG, Mathe I, Loxdale HD, Balog A, Nyaradi II. Endosymbiotic bacterial diversity associated with corn leaf aphid, *Rhopalosiphum maidis* Fitch (Hemiptera: *Aphididae*) populations under different maize management systems preliminary study. North-Western Journal of Zoology. 2021;17(2):1–12.
- 9. Csorba AB, Fora CG, Balint J, Felföldi T, Szabo A, Mathe I, Loxdale HD, Kentelky E, Nyaradi II, Balog A. Endosymbiotic bacterial diversity of corn leaf aphid, *Rhopalosiphum maidis* Fitch (Hemiptera: *Aphididae*) associated with maize management systems. Microorganisms. 2022;10(5):939.
- 10. Douglas AE. Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology. 2015;60:17–34.
- 11. Douglas AE. How multi-partner endosymbioses function. Nature Reviews Microbiology. 2016;14(12):731–743.
- 12. Dunbar HE, Wilson ACC, Ferguson NR, Moran NA. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLoS Biology. 2007;5(5):e96.
- 13. Fares MA, Ruiz-González MX, Moya A, Elena SF, Barrio E. GroEL buffers against deleterious mutations. Nature. 2002;417(6887):398–398.
- 14. Guo J, Hatt S, He K, Chen J, Francis F, Wang Z. Nine facultative endosymbionts in aphids: a review. Journal of Asia-Pacific Entomology. 2017;20(3):794–801.
- 15. Huang CY, Lee CY, Wu HC, Kuo MH, Lai CY. Interactions of chaperonin with a weakly active anthranilate synthase from the aphid endosymbiont *Buchnera aphidicola*. Microbial Ecology. 2008;56(4):696–703.
- 16. Russell JA, Moran NA. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proceedings of the Royal Society B: Biological Sciences. 2006;273(1586):603–610.
- 17. Kaech H, Dennis AB, Vorburger C. Triple RNA-Seq characterizes aphid gene expression in response to infection with unequally virulent strains of the endosymbiont *Hamiltonella defensa*. BMC Genomics. 2021;22(1):449.
- 18. Kupper M, Gupta SK, Feldhaar H, Gross R. Versatile roles of the chaperonin GroEL in microorganism–insect interactions. FEMS Microbiology Letters. 2014;353(1):1–10.
- 19. Loxdale HD, Balog A, Biron DG. Aphids in focus: unravelling their complex ecology and evolution using genetic and molecular approaches. Biological Journal of the Linnean Society. 2020;129(3):507–531.
- 20. Łukasik P, Guo H, van Asch M, Henry LM, Godfray HCJ, Ferrari J. Horizontal transfer of facultative endosymbionts is limited by host relatedness. Evolution. 2015;69(10):2757–2766.
- 21. Luo C, Belghazi M, Schmitz A, Lemauf S, Desneux N, Simon JC, Poirié M, Gatti JL. Hosting certain facultative symbionts modulates the phenoloxidase activity and immune response of the pea aphid *Acyrthosiphon pisum*. Insect Science. 2021;28(6):1780–1799.

- 22. Montllor CB, Maxmen A, Purcell AH. Facultative bacterial endosymbionts benefit pea aphids *Acyrthosiphon pisum* under heat stress. Ecological Entomology. 2002;27(2):189–195.
- 23. Moran NA, Yun Y. Experimental replacement of an obligate insect symbiont. Proceedings of the National Academy of Sciences. 2015;112(7):2093–2096.
- 24. Nichols HL, Goldstein EB, Saleh Ziabari O, Parker BJ. Intraspecific variation in immune gene expression and heritable symbiont density. PLoS Pathogens. 2021;17(4):e1009552.
- 25. Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proceedings of the National Academy of Sciences. 2005;102(36):12795–12800.
- 26. Price DR, Wilson AC. A substrate ambiguous enzyme facilitates genome reduction in an intracellular symbiont. BMC Biology. 2014;12(1):110.
- 27. Ramírez-Cáceres GE, Moya-Hernández MG, Quilodrán M, Nespolo RF, Ceballos R, Villagra CA, Ramírez CC. Harbouring the secondary endosymbiont *Regiella insecticola* increases predation risk and reproduction in the cereal aphid *Sitobion avenae*. Journal of Pest Science. 2019;92(3):1039–1047.
- 28. Salem H, Kaltenpoth M. Beetle-bacterial symbioses: endless forms most functional. Annual Review of Entomology. 2022;67(1):201–219.
- 29. Scarborough CL, Ferrari J, Godfray HCJ. Aphid protected from pathogen by endosymbiont. Science. 2005;310(5755):1781–1781.
- 30. Schmitz A, Anselme C, Ravallec M, Rebuf C, Simon JC, Gatti JL, Poirié M. The cellular immune response of the pea aphid to foreign intrusion and symbiotic challenge. Journal of Insect Physiology. 2012;58(1):41–47
- 31. Skaljac M, Vogel H, Wielsch N, Mihajlovic S, Vilcinskas A. Transmission of a protease-secreting bacterial symbiont among pea aphids via host plants. Frontiers in Physiology. 2019;10:438.
- 32. Skvarla MJ, Halbert SE, Foottit RG, Jensen AS, Maw E, Miller GL. An update to the adventive aphids (Hemiptera: *Aphidoidea*) of America north of Mexico, with notes on intercepted species. Proceedings of the Entomological Society of Washington. 2017;119(1):90–111.
- 33. Subedi B, Poudel A, Aryal S. The impact of climate change on insect pest biology and ecology: implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research. 2023;14:100733.
- 34. Sunil V, Majeed W, Chowdhury S, Riaz A, Shakoori FR, Tahir M, Dubey VK. Insect population dynamics and climate change. In: Climate Change and Insect Biodiversity. CRC Press; 2023. p.121–146.
- 35. van Emden HF, Harrington R, editors. Aphids as Crop Pests. 2nd ed. CABI; 2017.
- 36. Van Ham RC, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jiménez L, Postigo M, Silva FJ, Tamames J. Reductive genome evolution in *Buchnera aphidicola*. Proceedings of the National Academy of Sciences. 2003;100(2):581–586.
- 37. Wernegreen JJ. Mutualism meltdown in insects: bacteria constrain thermal adaptation. Current Opinion in Microbiology. 2012;15(3):255–262.

- 38. Wu Y, Li J, Liu H, Qiao G, Huang X. Investigating the impact of climate warming on phenology of aphid pests in China using long-term historical data. Insects. 2020:11(3):167.
- 39. Zepeda-Paulo F, Lavandero B. Effect of the genotypic variation of an aphid host on the endosymbiont associations in natural host populations. Insects. 2021;12(3):217.
- 40. Zhang B, Leonard SP, Li Y, Moran NA. Obligate bacterial endosymbionts limit thermal tolerance of insect host species. Proceedings of the National Academy of Sciences. 2019;116(49):24712–24718.
- 41. Zhang Y, Cai T, Ren Z, Liu Y, Yuan M, Cai Y, Yu C, Shu R, He S, Li J, Wong AC. Decline in symbiont-dependent host detoxification metabolism contributes to increased insecticide susceptibility of insects under high temperature. The ISME Journal. 2021;15(12):3693–3703.