
International Journal of Advanced Biochemistry Research 2025; SP-9(10): 2045-2047

ISSN Print: 2617-4693 ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; SP-9(10): 2045-2047 www.biochemjournal.com Received: 02-08-2025 Accepted: 06-09-2025

Patoliya Armi R M.Sc. Student, Junagadh

Agricultural University, Junagadh, Gujarat, India

Patoliya BV

Assistant Professor, Junagadh Agricultural University, Junagadh, Gujarat, India

Kansagara Hardi M

M.Sc. Student, Junagadh Agricultural University. Junagadh, Gujarat, India

Patoliya Parth R

Student, Junagadh Agricultural University. Junagadh, Gujarat, India

Butani AM

Assistant Professor, Junagadh Agricultural University, Junagadh, Gujarat, India

Corresponding Author: Patoliya Armi R M.Sc. Student, Junagadh Agricultural University, Junagadh, Gujarat, India

Effect of number of nodes and IBA concentration on growth parameters of little gourd cutting (Coccinia grandis L.)

Patoliya Armi R, Patoliya BV, Kansagara Hardi M, Patoliya Parth R and Butani AM

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i10Sy.6154

Abstract

An experiment was conducted to evaluate the effect of varying node numbers and indole-3-butyric acid (IBA) concentrations on the growth parameters of cuttings. The study was conducted with completely randomized design with factorial concept comprising 12 treatment combinations: three node numberstwo (N₁), three (N₂) and four (N₃) nodes and four IBA concentrations-250 ppm (I₁), 500 ppm (I₂), 750 ppm (I₃) and 1000 ppm (I₄), each replicated three times. Results showed that cuttings with four nodes (N₃) produced the highest number of branches (4.74, 6.75, 7.82, 8.06), leaves (12.75, 17.87, 23.47, 29.21) and vine length (135.67 cm, 149.42 cm, 169.54 cm, 171.63 cm) at 30, 45, 60 and 75 days after planting. Among the IBA treatments, 250 ppm (I₁) recorded the highest number of leaves (10.61, 15.29, 22.53, 28.06), branches per cutting (3.77, 6.27, 6.43) and vine length (113.99 cm, 140.95 cm, 154.52 cm) at 30, 60 and 75 DAP. The combination of four nodes and 250 ppm IBA (N₃I₁) resulted in the highest branches (5.43, 7.31, 8.74, 9.25), leaves (13.48, 19.55, 25.91, 33.30) and vine length (161.41 cm, 184.27 cm, 192.25 cm, 207.93 cm) at 30, 45, 60 and 75 DAP. Thus, four-node cuttings treated with 250 ppm IBA showed superior growth performance across vegetative parameters.

Keywords: Little gourd, IBA concentration, number of node

Introduction

Little gourd, a member of the family Cucurbitaceae and the genus Coccinia comprising about 35 species, is believed to have originated in India. It is commonly referred to by several names such as tindora, kundri, kovakkai, baby watermelon, and gentleman's toes.

In Gujarat cucurbits mainly grown in Surat, Anand, Kheda, Mahesana, Vadodara, Banaskantha and Rajkot. In Gujarat total area under cucurbits cultivation is around 12.62 lakh hectares and total annual production with 19.31 lakh MT and productivity 15.30 MT/ha. In India, little gourd is widely grown in southern, eastern and western regions mainly in states like Gujarat, Karnataka, Tamil Nadu, Andhra Pradesh and Telangana (Anon., 2021) [2]. Little gourd remains in high demand because it is available for most of the year (February to October). Therefore, large-scale multiplication is needed to meet consumer demand. Although both sexual and asexual methods are available for its multiplication, sexual propagation has certain drawbacks. Hence, the crop is more efficiently raised through conventional vegetative methods, which can ensure an abundant and timely supply of planting material at the beginning of the season.

Seed propagation in little gourd is generally avoided because it results in low germination and late flowering. Although only about 10% male plants are required for effective pollination and fruit set, more than half of the plants produced from seed turn out to be nonfruiting males. Poor seed viability and weak seedling establishment further make sexual propagation unsuitable for commercial cultivation. In comparison, vegetative propagation using stem cuttings provides a more reliable and efficient option for large-scale production of little gourd.

Although little gourd is multiplied through vegetative means, the lack of a standardized protocol and the poor efficiency of conventional techniques have resulted in limited availability of planting material in the market. Hence, there is a need to establish a fast and reliable multiplication method with a high success rate.

Materials and Methods

The experiment was carried out at the Hi-tech Horticulture Park, College of Horticulture, Junagadh Agricultural University, Junagadh, from July 2023 to September 2023. Little gourd cuttings were collected from Vegetable Farm of Navsari Agricultural University, Navsari. Total twelve treatment combinations comprising three level of node number viz., two nodes (N_1) , three nodes (N_2) , four nodes (N_3) and four level of IBA concentration viz., 250 ppm (I_1) , 500 ppm (I₂), 750 ppm (I₃) and 1000 ppm (I₄) were allocated in completely randomized design with factorial concept in three repetition. Cuttings were taken from one-year-old little gourd plants, and a slant cut was made at the base of each cutting. A slant cut was given at the base of the each cuttings. The IBA concentration were prepared by dissolving 0.250 g, 0.500 g, 0.750 g and 1 g of respective growth regulator in small quantity of ethyl alcohol and the volume was made up to 100 ml by adding distilled water. The potting medium consisted of soil, FYM, and vermicompost mixed in equal proportions (1:1:1). Polyethylene bags of 8×10 cm size were filled with this mixture. Observations were recorded from five randomly selected plants per treatment in each replication.

Results and Discussion Sprouting parameter

Maximum sprouts per cutting (4.15) were observed in four nodes cutting (N₃), these might be due to number of buds increased and these acted as source of hormones for sprouting, this result was supported by Amoah (1997) [1] in sweet potato. The maximum number of sprouts per cutting (4.11) was found with 250 ppm IBA (I₁). This might be due to IBA application, which affected cell division in the vascular cambium, cell expansion and control of differentiation into different types of cambium may have contributed to the higher number of sprouts formed with the growth regulators. These results were collaborated by findings of Devi et al. (2016) [4] in phalsa. The interaction effect of the number of nodes and IBA treatment on the number of sprouts per cutting showed maximum (4.75) in four nodes per cutting treated with 250 ppm IBA (N₃I₁), these might be due to increased auxin concentration enhancing rooting and sprouting, consistent with Sharma et al. (2011) [7] in Premna integrifolia.

Growth Parameter

The maximum number of branches (5.43, 7.31, 8.74 and 9.25) was found in treatment combination four nodes cutting treated with 250 ppm IBA concentration (N₃I₁) at 30, 45, 60 and 75 DAP, respectively. This might be due to IBA, which increases number of shoots resulting in higher growth of cutting. Better nutrient availability and more number of shoots leading to higher production of photosynthetically functional leaves and growth of cutting. Similar findings were also reported by Khapre *et al.* (2015) ^[5] in fig.

The maximum number of leaves (13.48, 19.55, 25.91 and 33.30) was found in treatment combination four nodes + 250 ppm IBA concentration (N_3I_1) at 30, 45, 60 and 75 DAP, respectively, This might be due to the longer cutting has more carbohydrates accumulation which helps in vegetative growth of the seedlings as compared to shorter cuttings. The

lower concentration of IBA proved to be beneficial for producing more leaves. This agree with the findings of Mishra *et al.* (1983)^[6] in small bitter gourd.

The maximum vine length (161.41, 184.27, 192.25 and 207.93 cm) was found in treatment combination four nodes cuttings treated with 250 ppm IBA concentration (N_3I_1) at 30, 45, 60 and 75 DAP, respectively. The results of present study are also in close conformity by Bhardwaj *et al.* (2017) ^[3] in little gourd.

Table 1: Effect of number of nodes and IBA concentration on sprouting parameter on little gourd cuttings

	Treatment Combination	Number of sprouts			
	Treatment Combination	per cuttings			
$N_1I_1 \\$	2 nodes + 250 ppm IBA concentration	3.07			
N_1I_2	2 nodes + 500 ppm IBA concentration	3.27			
N_1I_3	2 nodes + 750 ppm IBA concentration	3.23			
N_1I_4	2 nodes + 1000ppm IBA concentration	3.53			
N_2I_1	3 nodes + 250ppm IBA concentration	4.50			
N_2I_2	3 nodes + 500 ppm IBA concentration	4.13			
N_2I_3	3 nodes + 750 ppm IBA concentration	4.23			
N_2I_4	3 nodes + 1000ppm IBA concentration	3.27			
N_3I_1	4 nodes + 250 ppm IBA concentration	4.75			
N_3I_2	4 nodes + 500 ppm IBA concentration	4.16			
N_3I_3	4 nodes + 750 ppm IBA concentration	4.07			
N_3I_4	4 nodes + 1000 ppm IBA concentration	3.64			
	S. Em. ±	0.112			
	C.D. at 5 %	0.32			
	C. V. %	5.08			

N₃I₁-Four nodes + 250 ppm IBA concentration

 N_1I_1 -Two nodes + 250 ppm IBA concentration

Table 2: Effect of number of nodes and IBA concentration on sprouting parameter on little gourd cuttings

Treatment Combination		Number of branches			Number of leaves			Vine length				
		45	60	75	30	45	60	75	30	45	60	75
		DAS	DAS	DAS	DAS	DAS	DAS	DAS	DAS	DAS	DAS	DAS
N_1I_1 2 nodes + 250 ppm IBA concentra	tion 2.65	3.49	3.87	4.57	7.54	11.91	20.09	24.60	77.80	102.42	103.22	123.95
N ₁ I ₂ 2 nodes + 500 ppm IBA concentra	tion 2.66	3.52	3.57	5.40	7.47	12.76	21.36	26.18	81.03	125.38	123.97	143.43
N ₁ I ₃ 2 nodes + 750 ppm IBA concentra	tion 2.47	3.75	3.35	4.73	7.69	12.56	21.64	29.31	97.35	122.05	123.40	136.33
N ₁ I ₄ 2 nodes + 1000ppm IBA concentra	tion 2.67	3.46	4.02	4.60	7.03	12.59	21.09	28.64	91.90	120.09	134.74	137.70
N_2I_1 3 nodes + 250 ppm IBA concentra	tion 3.24	5.38	6.20	5.47	10.81	14.42	21.58	26.29	102.78	136.15	133.09	131.67
N_2I_2 3 nodes + 500 ppm IBA concentra	ion 3.90	5.30	6.63	5.66	11.00	14.68	22.34	26.39	104.75	134.40	137.82	144.94
N_2I_3 3 nodes + 750 ppm IBA concentra	tion 3.53	6.18	6.20	5.84	10.43	14.31	22.49	24.20	108.16	139.54	134.42	137.54
N ₂ I ₄ 3 nodes + 1000ppm IBA concentra	tion 3.63	5.88	6.50	6.15	10.67	14.27	22.52	24.09	107.16	138.74	141.74	137.04
N ₃ I ₁ 4 nodes + 250 ppm IBA concentra	tion 5.43	7.31	8.74	9.25	13.48	19.55	25.91	33.30	161.41	184.27	192.25	207.93
N ₃ I ₂ 4 nodes + 500 ppm IBA concentra	tion 4.41	6.74	7.17	7.90	12.24	16.90	22.32	27.32	126.77	144.71	166.19	154.16
N ₃ I ₃ 4 nodes + 750 ppm IBA concentra	tion 4.47	6.81	7.77	7.59	12.15	17.46	23.10	28.14	131.76	145.73	160.69	162.02
N ₃ I ₄ 4 nodes + 1000 ppm IBA concentra	tion 4.64	6.13	7.60	7.47	13.13	17.57	22.53	28.08	122.73	122.98	159.01	162.40
S. Em. ±		0.237	0.253	0.283	0.283	0.500	0.581	0.920	4.898	5.869	5.777	5.671
C.D. at 5 %		0.67	0.72	0.81	0.80	1.42	1.65	2.62	13.94	16.71	16.44	16.14
C. V. %		7.69	7.35	7.89	4.75	5.81	4.52	5.85	7.75	7.55	7.02	6.63

N₃I₁-Four nodes + 250 ppm IBA concentration

 N_1I_1 -Two nodes + 250 ppm IBA concentration

Acknowledgement

The authors sincerely thank the Department of Vegetable Science, College of Horticulture, Junagadh Agricultural University, Junagadh, for their valuable support and important contributions to this research.

Conclusion

It can be concluded that the number of nodes on cuttings and IBA concentration significantly affected the growth of little gourd cuttings. Cuttings with four nodes treated with 250 ppm IBA concentration using the quick dip method (for 5 minutes) showed the best results for all growth-related parameters.

Reference

- 1. Amoah FM. The effect of number of nodes per cutting and potassium fertilizer on the growth, yield and yield components of sweet potatoes (*Ipomoea batatas* Poir). Ghana Journal of Agricultural Science. 1997;30(1):53-62.
- 2. Anonymous. Area and Production 2021-22. Directorate of Horticulture, Agriculture, Farmers Welfare and Cooperation Department, Government of Gujarat. 2021. Available from: https://doh.gujarat.gov.in/horticulture-census.htm (accessed on 20 February 2023).
- 3. Bhardwaj DR, Rameshwar S, Hira LAL, Vishwa N, Singh AK. Effect of node number and auxin concentration on propagation of ivy gourd (*Coccinia cordifolia* Cogn) through stem cuttings. Vegetos. 2017;30(1):84-86.
- 4. Devi J, Bakshi P, Wali VK, Kour K, Sharma N. Role of auxin and dates of planting on growth of cutting raised plantlets of phalsa (*Grewia asiatica* L.). The Bioscan. 2016;11(1):535-537.
- 5. Khapre LS, Dahale MH, Deshmukh LS, Bhusari RB. Effect of plant growth regulators on rooting in cuttings of fig (*Ficus carica* L.) cv. Dinkar. Ecology, Environment and Conservation Journal Papers. 2015;21(2):823-826.
- 6. Mishra KC, Sahu RP. Large scale cultivation of small bitter gourd: Problems and possibilities. Indian Horticulture. 1983;28(3):5-8.
- 7. Sharma Y, Venugopal CK, Hegde RV. Propagation of a rare medicinal plant species *Premna integrifolia* by hardwood cuttings. Indian Journal of Horticulture. 2011;68(1):108-112.