
International Journal of Advanced Biochemistry Research 2025; SP-9(10): 1900-1905

ISSN Print: 2617-4693 ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; SP-9(10): 1900-1905 www.biochemjournal.com Received: 25-07-2025 Accepted: 29-08-2025

AV Rathod

Department of Floriculture and Landscape Architecture, VNMKV, Parbhani, Maharashtra, India

VV Bhagat

Associate Professor, College of Horticulture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

DD Adsure

Ph.D. Scholar, College of Agriculture, Vasantrao Naik Marathwada Krishi Vidyapeeth, Parbhani, Maharashtra, India

PD Wakle

Department of Floriculture and Landscape Architecture, VNMKV, Parbhani, Maharashtra, India

RK Pandit

Department of Floriculture and Landscape Architecture, VNMKV, Parbhani, Maharashtra, India

RH Kudke

Department of Floriculture and Landscape Architecture, VNMKV, Parbhani, Maharashtra, India

Corresponding Author: AV Rathod

Department of Floriculture and Landscape Architecture, VNMKV, Parbhani, Maharashtra, India

Effect of different growing media on growth and flower yield of calendula under shade net condition (Calendula officinalis L.)

AV Rathod, VV Bhagat, DD Adsure, PD Wakle, RK Pandit and RH Kudke

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i10Sw.6116

Abstract

The study on "Effect of different growing media on growth and flower yield of calendula under shade net condition (*Calendula officinalis* L.)" was conducted at the College of Horticulture, VNMKV, Parbhani (Maharashtra) during 2024-25. The experiment was laid out in a CRD with nine different media combinations and three replications. Treatments included soil, sand, vermicompost, cocopeat, perlite, leaf mould and black soil in different proportions. Results showed that T₃ (Soil + Sand + Vermicompost + Cocopeat) performed best, recording maximum plant height (28.63 cm), plants spread (30.14 cm), leaves (72.13), branches (22.40) and leaf area (64.61 cm²). It also showed early bud initiation (23.77 days), early flowering after bud initiation (2.36 days), 50% flowering (45.43 days), larger bud (1.41 cm) and flower diameter (5.20 cm), longer flower life (7.73 days) and higher yield (36.50) flowers per plant, (4.77 g) fresh weight, (0.52 g) dry weight. Postharvest soil NPK status was also highest in T₃.

Keywords: Calendula officinalis, growing media, vermicompost, cocopeat, perlite, soil nutrients

Introduction

Calendula is an herbaceous annual or short-lived perennial originally native to Egypt, but now widely naturalized across temperate regions. Its cultivation dates back to Roman times, primarily for its medicinal value. At present, calendula is grown both for its therapeutic applications and as an ornamental plant. Ornamental production includes cut flowers and potted plants, while cultivation for cut flowers and herbs can be carried out in open fields, pots, or under greenhouse conditions Kareem *et al.* (2014) ^[5].

Calendula given its adaptability, aesthetic value and commercial potential, calendula cultivation in Marathwada can contribute significantly to rural livelihoods, diversification of cropping systems and promotion of medicinal plant farming. Research on the use of different growing media such as vermicompost, FYM, cocopeat and perlite is also being explored to enhance the productivity and quality of calendula under local conditions, opening up new areas for horticultural research in the region Kumar *et al.* (2018) [12].

Marathwada's semi-arid climate, moderate winter temperatures and well-drained soils provide a conducive environment for growing calendula during the rabi season (October to March). The crop performs well under low-input farming systems, making it an ideal choice for small and marginal farmers of the region. Calendula cultivation is gaining attention under organic farming and integrated crop systems, especially due to its ability to thrive with minimal irrigation and resistance to common pests and diseases.

Growing media play a crucial role in determining the quality and productivity of flowering plants. Soil available nitrogen content was analysed by the Alkaline KMnO₄ method. phosphorus by the Olsen method and potassium was measured using a flame photometer.

Materials and Methods

The present investigation was carried out during the winter season 2024-25. At experimental filed of the College of Horticulture, VNMKV, Parbhani, Maharashtra. The experiment was laid out in Completely Randomized Design (CRD) with nine different potting media *viz.* T₁

(Soil + Sand + FYM), T₂ (Soil + Sand + Vermicompost), T₃ (Soil + Sand + Vermicompost + Cocopeat), T₄ (Cocopeat + Vermicompost + Perlite), T₅ (Cocopeat + Perlite + Leaf Mould), T₆ (Cocopeat + Vermicompost + Leaf Mould), T₇ (Soil + Leaf Mould + Sand), T₈ (Cocopeat + Sand + Vermicompost), T₉ (Black Soil). In this experiment the seeds of calendula were sown in third week of November 2024 and transplanted in second week of December 2024 in 8 inches plastic pots filled with different potting media as per treatments. Observations on growth and flowering were recorded. Total amount of initial and post-harvest soil available N, initial and post-harvest available P and initial and postharvest K were evaluated from each treatment from the potting media. The potting media were prepared by mixing thoroughly the different components *viz.*, sand, soil,

cocopeat, vermicompost, leafmould and perlite in different proportions as per the treatment.

Results and Discussion Plant height (cm)

The maximum plant height (28.63 cm) at 120 DAT was observed in T_3 (Soil + Sand + Vermicompost + Cocopeat), followed by T_2 (27.47 cm), while the minimum (14.30 cm) was recorded in T_9 (Black Soil). The higher growth in T_3 and T_2 may be attributed to the slow release of nutrients, micronutrients, and growth regulators from vermicompost and cocopeat, along with improved soil properties and microbial activity. Poor growth in black soil was likely due to nutrient deficiency. Similar results were reported by Mehakar *et al.* (2022) [16] and Deogade *et al.* (2020) [14].

Table 1: Effect of different growing media on plant height (cm).

Treat. No	Treatment details	Days after transplanting (DAT)			(T)
Treat. No	reatment details	30	60	90	120
T_1	Soil+ Sand+ FYM	9.28	14.53	18.60	20.50
T_2	Soil+ Sand + Vermicompost	11.30	20.66	23.47	27.47
T ₃	Soil + Sand + Vermicompost + Cocopeat	12.30	22.53	25.13	28.63
T ₄	Cocopeat + Vermicompost + Perlite	11.02	18.80	22.32	25.00
T ₅	Cocopeat + Perlite + Leaf mould	9.02	13.13	17.24	19.17
T ₆	Cocopeat + Vermicompost + Leaf mould	8.20	12.67	15.37	17.50
T ₇	Soil + Leaf mould + Sand	10.00	16.87	19.30	22.28
T ₈	Cocopeat + Sand + Vermicompost	10.37	17.80	20.30	23.70
T ₉ Control (Black soil)		7.70	10.40	12.55	14.30
	SE (m ±)		1.02	1.35	0.94
	CD at 5%	0.23	0.34	0.45	0.32

Leaves per plant

The maximum leaves per plant 72.13 at 120 DAT were recorded in T_3 (Soil + Sand + Vermicompost + Cocopeat) which were followed by T_2 (Soil + Sand + Vermicompost) which was recorded 70.57 in (Table 2). This variation may be attributed to better aeration, higher water-holding

capacity and the continuous supply of nutrients, particularly nitrogen in available form, which promotes root proliferation and overall plant growth, ultimately resulting in a higher number of leaves per plant. These results are in agreement with the findings of Deogade *et al.* (2022)^[14].

Table 2: Effect of different growing media on leaves per plants.

Treat. No	Treatment datable	Da	Days after transplanting (DAT)		
reat. No	Treatment details	30	60	90	120
T ₁	Soil+ Sand+ FYM	19.87	38.23	52.60	59.37
T ₂	Soil+ Sand + Vermicompost	33.70	41.07	60.13	70.57
T ₃	Soil + Sand + Vermicompost + Cocopeat	40.03	56.00	61.13	72.13
T ₄	Cocopeat + Vermicompost + Perlite	28.72	40.73	57.63	68.70
T ₅	Cocopeat + Perlite + Leaf mould	17.07	34.23	48.54	55.57
T ₆	Cocopeat + Vermicompost + Leaf mould	15.40	30.44	44.06	57.70
T ₇	Soil + Leaf mould + Sand	20.70	39.37	54.70	62.17
T ₈	Cocopeat + Sand + Vermicompost	24.33	40.13	56.85	66.50
T ₉ Control (Black soil)		14.37	28.33	38.07	45.57
	SE (m ±)	10.35	3.59	2.56	3.89
CD at 5%		3.48	1.21	0.86	1.31

Branches per plant

At 120 DAT, the maximum number of branches per plant was obtained in T_3 (Soil + Sand + Vermicompost + Cocopeat), followed by T_2 (Soil + Sand + Vermicompost). The minimum number of branches was noted in T_9 (Black Soil). The superior performance of T_3 , T_2 and T_4 can be attributed to the synergistic role of soil and vermicompost, where soil provides essential mineral nutrients while vermicompost enriches the medium with macro-and micronutrients along with growth-promoting hormones

(Table 3). In addition, vermicompost improves the physical properties of the substrate by preventing compaction and enhancing aeration, which facilitates better branching. The inclusion of cocopeat further aids in moisture retention and organic matter enrichment, thereby creating favourable conditions for enhanced branch formation. Deogade *et al.* (2020) [14] and Kareem *et al.* (2014) [5] who also reported improved branching in plants grown in vermicompost-enriched media.

Table 3: Effect of different growing media on number of branches.

Treat. No	Treatment details]	Days after tra	nsplanting (Da	AT)
Treat. No	reatment details	30	60	90	120
T_1	Soil+ Sand+ FYM	4.27	10.33	12.25	17.60
T ₂	Soil+ Sand + Vermicompost	8.27	14.33	17.13	21.10
T 3	Soil + Sand + Vermicompost + Cocopeat	9.40	15.00	19.37	22.40
T ₄	Cocopeat + Vermicompost + Perlite	7.40	13.70	15.47	20.23
T ₅	Cocopeat + Perlite + Leaf mould	3.63	8.57	11.35	16.11
T ₆	Cocopeat + Vermicompost + Leaf mould	3.50	7.30	10.40	12.56
T 7	Soil + Leaf mould + Sand	5.50	12.17	13.01	18.53
T ₈	Cocopeat + Sand + Vermicompost	6.27	13.00	14.33	19.53
T ₉ Control (Black soil)		3.07	6.23	8.50	11.02
	CD at 5%	0.42	0.48	0.41	0.29
	SE (m ±)	1.26	1.44	1.22	0.86

Plants spread (cm)

The maximum plant spread (30.14 cm) at 120 DAT was recorded by T₃ (Soil + Sand + Vermicompost + Cocopeat) which was followed by T₂ (Soil + Sand + Vermicompost)) which recorded value of 28.47 cm (Table 4). The minimum plant spread (16.03 cm) was recorded by T₉ (Black Soil). It is due to soil provides essential minerals and vermicompost contributes both macro-and micronutrients along with

growth-promoting substances. Vermicompost also improves the physical structure of the medium, preventing compaction and enhancing aeration. Additionally, the presence of cocopeat in the mixtures helps retain moisture and enriches organic matter, thereby creating favourable conditions for better plant spread. Similar result was found by Sardoei *et al.* (2015) [8] and Chauhan *et al.* (2014) [4].

Table 4: Effect of different growing media on plant spread (cm).

Treat. No	Treatment details	Da	Days after transplanting (DAT)		
1 reat. No	reatment details	30	60	90	120
T ₁	Soil+ Sand+ FYM	10.43	12.03	14.02	22.31
T_2	Soil+ Sand + Vermicompost	13.47	15.83	18.02	28.47
T ₃	T ₃ Soil + Sand + Vermicompost + Cocopeat		16.43	19.43	30.14
T_4	T ₄ Cocopeat + Vermicompost + Perlite		14.57	16.15	26.01
T ₅	Cocopeat + Perlite + Leaf mould	10.06	11.43	13.30	20.24
T_6	T ₆ Cocopeat + Vermicompost + Leaf mould		10.59	12.02	18.34
T 7	T ₇ Soil + Leaf mould + Sand		14.57	16.15	26.01
T ₈	T ₈ Cocopeat + Sand + Vermicompost		13.37	14.48	24.18
T ₉ Control (Black soil)		7.43	9.07	11.01	16.03
	SE (m ±)		0.56	0.38	0.42
	CD at 5%	0.22	0.19	0.13	0.14

Leaf area (cm²)

The maximum leaf area $64.61~\text{cm}^2$ was recorded in T_3 (Soil + Sand + Vermicompost + Cocopeat) was followed by T_2 (Soil + Cocopeat + Vermicompost) which was recorded as $58.43~\text{cm}^2$ respectively (Table 5). highlighting its beneficial effect on early leaf expansion and photosynthetic surface

development. On the other hand, T_9 (Black Soil) produced the minimum leaf area (33.32 cm²), reflecting its limitation in supporting vigorous early leaf growth. Similar observations were also reported by Deogade *et al.* (2020) [14]

Table 5: Effect of different growing media on leaf area (cm²)

Treat. No	Treatment details	Leaf area (cm ²)
T_1	Soil+ Sand+ FYM	39.87
T ₂	Soil+ Sand + Vermicompost	58.43
T ₃	Soil + Sand + Vermicompost + Cocopeat	64.61
T_4	Cocopeat + Vermicompost + Perlite	50.67
T_5	Cocopeat + Perlite + Leaf mould	37.35
T ₆	Cocopeat + Vermicompost + Leaf mould	34.10
T 7	Soil + Leaf mould + Sand	35.07
T ₈	Cocopeat + Sand + Vermicompost	44.20
T 9	Control (Black soil)	33.32
SE (m ±)		15.78
	CD at 5%	

Days taken to first bud initiation

The data presented in Table 6 reveal that minimum days to first flower bud initiation (23.77 days) were recorded in T_3 potting mixture Soil + Sand + Vermicompost + Cocopeat. Whereas, maximum days to first flower bud initiation (39.79

days) was observed in T₉ (Black soil). The present findings might be due to better aeration, higher porosity, higher moisture and nutrient retention leads in higher accumulation of carbohydrate that ultimately resulted in early flowering.

Similar findings of results were also reported by Deogade *et al.* (2020) ^[14] in gerbera.

Days taken to first flower initiation

The shortest duration for flower opening from bud emergence (2.57 days) was observed in T_3 the potting mixture of Soil + Sand + Vermicompost + Cocopeat, whereas the longest duration (7.39 days) was noted in T_9 (Black soil). This variation may be attributed to the fact that the former combination also promoted earlier flower bud initiation compared to other treatments. Comparable

findings were reported by Deogade *et al.* (2020) [14] and Chauhan *et al.* (2014) [4] in gerbera.

50% flowering (days)

The earliest occurrence of 50% flowering (45.43 days) was recorded in T₃ the potting mixture of Soil + Sand + Vermicompost + Cocopeat, while the longest duration to reach 50% flowering (56.36 days) was observed in T₉ (Black soil). Comparable results were reported by Deogade *et al.* (2020) ^[14].

Table 6: Effect of different growing media on days taken to first bud initiation, days taken to first flower initiation and 50% flowering.

Treat. No	Treatment details	Days taken to first flower bud initiation	Days taken to first flower initiation	50% flowering (days)
T_1	Soil+ Sand+ FYM	30.67	3.83	51.00
T_2	Soil+ Sand + Vermicompost	26.13	2.57	46.44
T ₃	Soil + Sand + Vermicompost + Cocopeat	23.77	2.36	45.43
T ₄	Cocopeat + Vermicompost + Perlite	28.33	3.23	48.00
T ₅	Cocopeat + Perlite + Leaf mould	35.24	4.66	51.10
T_6	Cocopeat + Vermicompost + Leaf mould	38.85	6.48	54.40
T ₇	Soil + Leaf mould + Sand	37.19	6.20	52.53
T_8	Cocopeat + Sand + Vermicompost	33.37	4.31	48.63
T ₉	Control (Black soil)	39.79	7.39	56.33
	SE (m ±)	2.88	0.80	0.48
	CD at 5%	0.97	0.27	0.16

Flower bud diameter and flower diameter (cm)

The maximum diameter of flower bud (1.41 cm) was observed in T_3 (Soil + Sand + Vermicompost + Cocopeat) which was closely followed by T_2 (Soil + Sand + Vermicompost) was recorded (1.33 cm) and minimum diameter of flower bud (1.02 cm) was recorded in T_9 (Black soil).

The maximum diameter of fully open flower (5.20 cm) was observed in T_3 (Soil + Sand + Vermicompost + Cocopeat) which was followed by T_2 (Soil + Sand + Vermicompost) was recorded (4.20 cm) and minimum diameter o fully open flower (2.11 cm) was recorded in T_9 (Black soil). The larger flower size in certain treatments may be due to improved nutrient availability, enhanced photosynthesis, and the presence of growth-promoting substances in vermicompost, which act similarly to plant growth regulators Mehakar *et al.*

(2022)^[16] and Gariglio et al. (2010) ^[2].

Individual flower life (days)

The maximum duration of flower (7.73 days) was observed in T_3 (Soil + Sand + Vermicompost + Cocopeat) closely followed by T_2 (Soil + Sand + Vermicompost) which recorded 7.43 days respectively (Table 7). In contrast, the minimum flower duration (5.10 days) was noted in T_9 (Black soil). The extended flower life in certain media combinations can be attributed to the ability of cocopeat to retain higher moisture levels and the contribution of vermicompost in enhancing dry matter accumulation through nutrient supply, thereby prolonging flower longevity. Similar findings are Mehakar *et al.* (2022) [16] and Nair and Bharathi (2015) [6].

Table 7: Effect of different growing media on flower bud diameter, flower diameter in (cm) and individual flower life (days).

Treat. No	Treatment details	Flower bud diameter (cm)	Flower diameter (cm)	Individual flower life (days)
T_1	Soil+ Sand+ FYM	1.07	2.94	6.10
T_2	Soil+ Sand + Vermicompost	1.33	4.20	7.43
T ₃	Soil + Sand + Vermicompost + Cocopeat	1.41	5.20	7.73
T ₄	Cocopeat + Vermicompost + Perlite	1.25	3.90	7.10
T ₅	Cocopeat + Perlite + Leaf mould	1.11	3.24	5.82
T ₆	Cocopeat + Vermicompost + Leaf mould	1.10	3.10	5.21
T ₇	Soil + Leaf mould + Sand	1.03	2.41	5.28
T_8	Cocopeat + Sand + Vermicompost	1.13	3.27	6.73
T ₉	Control (Black soil)	1.02	2.11	5.10
	SE (m ±)	0.15	0.47	0.34
	CD at 5%	0.05	0.16	0.11

Number of bud and flowers per plant

The highest number of buds per plant (37.31) was recorded in T_3 (Soil + Sand + Vermicompost + Cocopeat) followed by T_2 (Soil + Sand + Vermicompost) which recorded 35.10 respectively (Table 4). The lowest number of bud (25.04) was observed in T_9 (Black soil).

The highest number of flowers per plant (36.50) was recorded in T_3 (Soil + Sand + Vermicompost + Cocopeat) followed by T_2 (Soil + Sand + Vermicompost) which recorded 34.71 respectively (Table 8). The minimum number of flower (23.01) was observed in T_9 (Black soil). The superior performance of treatments containing vermicompost may be attributed to its rich nutrient content

and enhanced availability of essential elements during critical growth stages, while cocopeat contributes to improved moisture retention. This combination likely promoted efficient nutrient uptake and carbohydrate accumulation, resulting in a higher number of flowers. In contrast, sand and cocopeat alone provide limited nutrients and moisture, leading to reduced growth and flowering. these results are consistent with earlier findings reported by Mehakar *et al.* (2022) [16] and Arunesh *et al.* (2020) [15].

Table 8: Effect on different growing media on number of buds per plant and number of flowers per plant.

Treat. No	Treatment details	Number of bud per plant	Number of flowers per plant
T_1	Soil+ Sand+ FYM	33.03	31.01
T_2	Soil+ Sand + Vermicompost	35.10	34.71
T ₃	Soil + Sand + vermicompost + Cocopeat	37.31	36.50
T ₄	Cocopeat + Vermicompost + Perlite	34.78	33.19
T ₅	Cocopeat + Perlite + Leaf mould	31.63	29.10
T ₆	Cocopeat + Vermicompost + Leaf mould	27.04	24.94
T ₇	Soil + Leaf mould + Sand	30.05	26.63
T ₈	Cocopeat + Sand + Vermicompost	34.02	32.04
T9	Control (Black soil)	25.04	23.01
	SE (m ±)	0.85	4.01
	CD at 5%	0.29	1.35

Fresh and dry weight of flower (g)

The maximum fresh weight (4.77 g) and dry weight of flower (0.52 g) was recorded by T_3 (Soil + Sand + Vermicompost +Cocopeat) which was followed by T_2 (Soil + Sand + Vermicompost) which recorded (3.20) and (0.47)

g) respectively (Table 9). The minimum fresh and dry weight of flower (1.47) and (0.15 g) was recorded by T_9 (Black soil). Similarity in result showed by Mehakar *et al.* $(2022)^{[16]}$ and Nair and Bharathi $(2015)^{[6]}$.

Table 9: Effect on different growing media on fresh weight of flower and dry weight of flower of calendula.

Treat. No	Treatment details	Fresh weight of flower (g)	Dry weight of flower (g)
T_1	Soil+ Sand+ FYM	2.16	0.28
T_2	Soil+ Sand + Vermicompost	3.20	0.47
T_3	Soil + Sand + Vermicompost + Cocopeat	4.77	0.52
T_4	Cocopeat + Vermicompost + Perlite	3.19	0.41
T_5	Cocopeat + Perlite + Leaf mould	2.03	0.21
T ₆	Cocopeat + Vermicompost + Leaf mould	1.96	0.18
T_7	Soil + Leaf mould + Sand	2.76	0.31
T ₈	Cocopeat + Sand + Vermicompost	3.03	0.33
T ₉	Control (Black soil)	1.47	0.15
	SE (m ±)	0.48	0.09
	CD at 5%	0.16	0.03

Postharvest nutrient status affected by different growing media

The maximum soil available nitrogen, phosphorus and potassium were observed with treatment T₃ (Soil + Sand +

Vermicompost +Cocopeat) at the post-harvest stages. While minimum soil available nitrogen, phosphorus and potassium were observed with treatment T₉ (Black soil). Similarity in result showed that Mehakar *et al.* (2022) ^[16].

 Table 10: Effect of different growing media on post-harvest soil nutrient status.

Treat. No	Treatment details	Available nitrogen (kg ha-1)	Available phosphorus (kg ha- ¹⁾	Available potassium (kg ha-¹)
T_1	Soil+ Sand+ FYM	232.97	19.33	491.89
T_2	Soil+ Sand + Vermicompost	250.11	20.44	514.30
T ₃	Soil + Sand + vermicompost + Cocopeat	253.83	22.32	523.94
T ₄	Cocopeat + Vermicompost + Perlite	240.40	17.64	499.29
T ₅	Cocopeat + Perlite + Leaf mould	235.45	15.44	493.94
T_6	Cocopeat + Vermicompost + Leaf mould	225.69	18.06	488.85
T 7	Soil + Leaf mould + Sand	228.78	17.36	489.66
T ₈	Cocopeat + Sand + Vermicompost	237.79	21.29	495.65
T 9	Control (Black soil)	152.23	14.73	486.49
	SE (m ±)	6.12	0.86	4.57
	CD at 5 %	2.06	0.29	1.54

Conclusion

On the basis of above results it may be concluded that, among the various growing media, T_3 (Soil + Sand + Cocopeat + Vermicompost) proved most effective, showing

superior performance in growth, flowering traits, as well as in maintaining soil available post-harvest nutrient status of the medium.

References

- 1. Sekar K, Sujata A. Effect of growing media and GA₃ on growth and flowering of *Gerbera jamesonii* H. Bolus. under naturally ventilated greenhouse. 2001::338-341.
- 2. Gariglio N, Pilatti R, Reineri P. Evaluation of composted willow sawdust as a substrate for *Calendula officinalis* and marigold production. Span J Agric Res. 2010;8(2):356-364.
- 3. Mehmood T, Ahmad R, Ahmad I, Hafiz IA, Abbasi NA. Effect of different growing media on the growth and flowering of *Zinnia elegans* cv. Blue Point. Pak J Agric Sci. 2013;50(1):27-33.
- 4. Chauhan N, Sirohi PS, Dahiya DS. Performance of *Gerbera jamesonii* cv. Alcochete under different growing media in polyhouse. Haryana J Hortic Sci. 2014;43(1):21-24.
- 5. Kareem A, Anjum MA, Akram A. Effect of different growing environments on the performance of *Calendula officinalis* L. J Agric Res. 2014;52(2):245-251.
- 6. Nair SA, Bharathi TU. Soilless media as a growing medium in horticulture-an overview. Int J Agric Sci. 2015;7(4):787-790.
- 7. Sardoei AS. The effect of different growing media on the growth and flowering of marigold (*Calendula officinalis* L.). Int J Adv Biol Biomed Res. 2014;2(3):703-707.
- 8. Sardoei AS, Shahdadneghad M. The role of growing media in the quality and quantity of flowering plants. Int J Adv Biol Biomed Res. 2015;3(1):1-10.
- 9. Kumar R, Singh R, Thakur M. Response of marigold to different potting media on flowering and yield. Plant Arch. 2015;15(1):355-358.
- 10. Padhiyar BM, Bhatt DS, Desai KD, Patel VH, Chavda JR. Influence of different potting media on growth and flowering of pot chrysanthemum var. Ajina Purple. Int J Chem Stud. 2017;5(4):1667-1669.
- 11. El-Sayed AA, Mahmoud AA, Hegazi AZ. Effect of compost and biofertilizers on *Calendula officinalis* grown in different growing media. Egypt J Hortic. 2018;45(1):101-112.
- 12. Kumar R, Singh AK, Singh R. Effect of different growing media on growth and flowering of *Calendula officinalis* L. J Pharmacogn Phytochem. 2018;7(2):1660-1664.
- 13. Gong P, Zhang J, Wang Y. Evaluation of peat alternatives for potted geranium and *Calendula officinalis*. HortScience. 2018;53(7):1020-1026.
- 14. Deogade AM, Wankhede VN. Effect of potting mixture and pot size on growth and flowering of *Calendula officinalis* L. Pharma Innov J. 2020;9(11):1163-1167.
- 15. Arunesh M, Kumar R, Sharma P. Influence of different growing media on growth and flowering of *Gerbera* cv. Goliath. Int J Curr Microbiol Appl Sci. 2020;9(4):2268-2275
- 16. Mehakar GR, Patil MT, Rathod AR. Influence of organic growing media on performance of *Calendula officinalis* L. Int J Chem Stud. 2022;10(2):198-202.
- 17. Kumar Y, Meena RK, Pandey V. Evaluation of different potting media on growth and flowering of *Calendula officinalis* L. Int J Chem Stud. 2022;10(2):45-50.

- 18. Lokhande PB, *et al.* Effect of vermicompost and organic formulations on yield and quality of soybean grown on vertisol. Int J Plant Soil Sci. 2023;1-8.
- 19. Gurjeet K, Singh G, Kaur J. Influence of growing media on growth and flowering of *Calendula officinalis* under pot conditions. J Med Plants Stud. 2024;12(1):47-51.