
International Journal of Advanced Biochemistry Research 2025; SP-9(10): 1302-1307

ISSN Print: 2617-4693 ISSN Online: 2617-4707 NAAS Rating (2025): 5.29 IJABR 2025; SP-9(10): 1302-1307 www.biochemjournal.com Raceived: 10.07-2025

Received: 10-07-2025 Accepted: 13-08-2025

Shivali Khandelwal

MVSc, Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

Taruna Bhati

Assistant Professor, Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

Vishal Yadav

MVSc, Department of Veterinary Gynaecology and Obstetrics, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

Rashmi Mishra

Ph.D. Scholar, Division of Veterinary Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India

Sudesh Kumar

MVSc, Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

Reshma Dhruw

MVSc, Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

BN Shringi

Professor and Head, Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

Corresponding Author: Shivali Khandelwal

MVSc, Department of Veterinary Microbiology and Biotechnology, College of Veterinary and Animal Science, Rajasthan University of Veterinary and Animal Sciences, Bikaner, Rajasthan, India

Evaluation of phenotypic and genotypic methods for coagulase typing of MRSA isolates from diverse sources

Shivali Khandelwal, Taruna Bhati, Vishal Yadav, Rashmi Mishra, Sudesh Kumar, Reshma Dhruw and BN Shringi

DOI: https://www.doi.org/10.33545/26174693.2025.v9.i10Sp.6007

Abstract

Methicillin-resistant Staphylococcus aureus (MRSA) is a significant pathogen in both human and veterinary medicine due to its resistance to multiple antibiotics and its zoonotic potential. This study aimed to compare the phenotypic detection of coagulase using the tube coagulase test (TCT) with plasma from humans and seven animal species, against genotypic detection through coa gene PCR among MRSA isolates from various sources. A total of 203 samples were collected from human pus, animal pus, mastitis milk, and unprocessed meat in Bikaner, Rajasthan, out of which 78 isolates were confirmed as MRSA based on 23S rRNA and mecA gene amplification. TCT results showed that 75 (96.15%) isolates were coagulase-positive at 5 hours, and one additional isolate turned positive at 24 hours. Human plasma showed the strongest and earliest coagulation, followed by plasma from camel, buffalo, horse, sheep, goat, cattle, and chicken. Coagulation strength was often higher when the plasma origin matched the host species of the isolate. All 78 isolates tested positive for the coa gene by PCR, showing greater sensitivity than TCT. Amplicon sizes varied from 350 bp to 850 bp, with five distinct profiles: 700 bp (38.46%), 600 bp (33.33%), 850 bp (20.51%), 350 bp (3.85%), and dual bands (600 and 850 bp) in 3.85% of isolates, with the dual bands observed only in animal-origin isolates. Among human-derived isolates, 700 bp and 850 bp genotypes were equally dominant, while 700 bp was most frequent in meat samples. The findings highlighted the limitations of TCT, particularly with animal isolates, and emphasized the value of coa gene PCR for accurate detection and genotypic characterization of MRSA.

Keywords: MRSA, S. aureus, coagulase gene, tube coagulase test, polymorphism

Introduction

Methicillin-resistant *Staphylococcus aureus* (MRSA) remains a critical pathogen in both human and veterinary healthcare, contributing to a wide array of infections and exhibiting resistance to multiple antibiotics (Turner *et al.*, 2019) [31]. Accurate identification and characterization of MRSA isolates are essential for effective treatment and infection control strategies (Geetha *et al.*, 2015) [13]. Among its virulence factors, coagulase, an enzyme responsible for converting fibrinogen to fibrin, is a traditional and significant marker used to distinguish *S. aureus* from coagulase-negative staphylococci (CNS) (Locatelli *et al.*, 2023) [19]. The tube coagulase test (TCT) remains a standard phenotypic assay for detecting coagulase activity (Moustafa *et al.*, 2021) [23]. Despite its simplicity and low cost, the test is influenced by variables such as the source of plasma, strain-specific coagulase production, and incubation duration (Javid *et al.*, 2018) [17]. Instances of false-negative or delayed coagulase responses have been documented, particularly among animal-origin isolates, raising concerns regarding the reliability of TCT as a standalone diagnostic method (Zamani *et al.*, 2023) [36].

At the molecular level, the *coa* gene, which encodes the coagulase protein, has emerged as a reliable target for genotypic detection and epidemiological typing of *S. aureus* (Mahmoudi *et al.*, 2017) ^[21]. Polymorphisms in the 3' region of the gene, particularly due to variable tandem repeats, have been widely used for strain differentiation (Dallal *et al.*, 2016). PCR-based *coa* typing provides higher sensitivity and specificity compared to phenotypic methods and is particularly useful in identifying atypical or weakly coagulase-producing strains

(Andrade-Figueiredo et al., 2023) [2]. Recent studies have revealed discrepancies between phenotypic coagulase expression and the presence of the coa gene, suggesting potential mutations or regulatory mechanisms that influence protein expression. For instance, Locatelli et al. (2023) [19] reported that a single-nucleotide deletion in the coa gene led to persistent coagulase-negative expression despite the presence of S. aureus, indicating the importance of incorporating molecular methods for accurate identification. Given the increasing recognition of host-adapted MRSA strains and the variability of diagnostic outcomes depending on the isolate source, a comparative analysis of TCT and coa gene detection becomes crucial. This study aims to evaluate the concordance between phenotypic and genotypic detection of coagulase among MRSA isolates from diverse origins and to assess the influence of plasma source and incubation time on the performance of the TCT.

Materials and Methods Sample Collection and Identification

The present study included a total of 203 samples collected from various human and animal sources in and around Bikaner, Rajasthan (India). A total of 45 human pus samples were collected from PBM Hospital, Bikaner. Animal pus samples (n = 60) were obtained from different species, including dogs (15), cattle (15), camels (15), and horses (15), at the Teaching Veterinary Clinical Complex (TVCC), College of Veterinary and Animal Science (CVAS), Bikaner. Additionally, 38 mastitis milk samples were collected from bovines presented at TVCC, CVAS, Bikaner, comprising 19 samples from cattle and 19 from buffaloes. Lastly, 60 unprocessed meat samples were included, consisting of 30 poultry meat swabs and 30 goat meat swabs collected from local meat shops in Bikaner. The samples were collected in sterile HiMedia hiculture collecting device and immediately transferred to the laboratory on ice for further processing.

Isolation and identification of MRSA

Cowan and Steel (1975) [9] and Quinn et al. (1994) [27] methods were used for the isolation and identification of S. aureus. Each sample was swabbed on to the nutrient agar plate and then incubated overnight at 37 °C. Next day different bacterial colonies were closely observed for their morphology, colour and consistency. For primary identification of S. aureus Gram's staining was used. For reconfirmation, the cultures were streaked on Mannitol salt agar, Baird Parker agar (Himedia Laboratories) and MeReSa agar. The colonies were further confirmed using the biochemical identification done by VITEK® 2 automated system (bioMerieux, France). The presumptively identified MRSA colonies were maintained at -80 °C in glycerol stocks for further analysis. Genomic DNA was extracted from a freshly grown culture in nutrient broth by using DNA was isolated by QIAamp DNA Mini Kit (Qiagen, USA). The extracted DNA was examined for purity and concentration using a NanoDrop spectrophotometer thereafter stored at -20 °C. The isolates were further genotypically confirmed by 23S rRNA species-specific polymerase chain reaction (PCR) (Straub et al., 1999) [30] and methicillin resistance was confirmed by the presence of the mecA gene (Mehrotra et al., 2000) [22].

Tube Coagulase Test

Blood was collected aseptically in anticoagulant-coated tubes and centrifuged at 2500 rpm for 15-20 min. The top layer of clear plasma was decanted into another sterilized test tube for further use in the test. The plasma was diluted to 1:10 in physiological saline solution and 0.5 ml of reconstituted plasma was taken in three test tubes. A 0.1 ml of an overnight test broth culture of MRSA was added to one tube and 0.1 ml of a broth culture of *S. epidermidis* was added to the second tube for negative control and another un-inoculated tube was kept as control. The tubes were rotated gently to mix the contents and incubated in a water bath at 37 °C. By slowly tilting the tube at a 90° angle, the tubes were examined at 1, 3, 5 and 24 hour compared with the control tubes. Clotting of plasma up to 5 hour was recorded as positive for "free" coagulase enzyme.

Amplification of coa gene

The coa gene amplification was done as per the method described by Hookey et al. (1998) [15] using F-5'-ATAGAGATGCTGGTACAGG-3' and GCTTCCGATTGTTCGATGC-3' PCR was primers. performed in 0.2 ml thin-walled PCR tubes. A 25 µL PCR reaction mixture consisting of 12.5 µL of 2X DreamTag Green PCR Master Mix (Thermoscientific, Mumbai, India), 0.5 µM of each primer, and 1 µL of template DNA was prepared and performed in a Veriti Thermal Cycler (Applied Biosystem). The following program was used for PCR cycles: 2 min at 94 °C, followed by 35 cycles of 1 min at 94 °C, 1 min at 57 °C, and 1 min at 70 °C with a final extension of 5 min at 72 °C. Amplified products were separated by electrophoresis in a 1.2% agarose gel in 1X TBE buffer at a constant voltage of 4 V/cm, stained using ethidium bromide (0.5µg/ml) and 100 bp DNA ladder was used as a molecular marker. The gel was then visualized under a gel documentation system (ENDURO GDS).

Results

Tube coagulase test

Coagulase production by 78 MRSA isolates was assessed using the tube coagulase test (TCT) with plasma from eight animal species and humans. Among these, 75 isolates (96.15%) were coagulase-positive at the 5-hour reading, while 3 isolates (3.85%) were initially negative (1 from camel pus, 2 from goat meat) (Figure 1). Notably, one of the initially negative isolates from goat meat showed a delayed positive reaction at 24 hours. The degree of clot formation varied between isolates and among plasmas of different species. Human plasma consistently showed the highest rate of positive coagulase reactions across all sources, followed by plasma from camel, buffalo, horse, sheep, goat, cattle, and chicken in descending order (Figure 2). Interestingly, coagulase reactions were more frequent and stronger when the plasma source matched the host species of the isolate.

Fig 1: Tube coagulase test: A-Positive; B-Negative

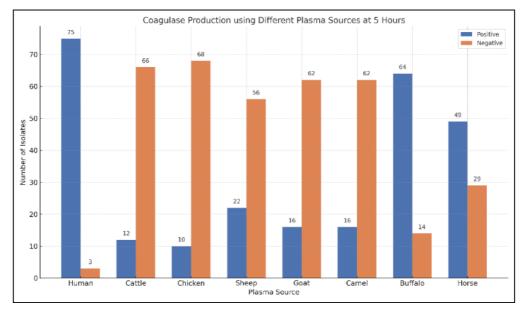


Fig 2: Comparison of coagulation of plasmas from different species of animals and human by MRSA isolates.

Amplification of coa gene:

All 78 MRSA isolates tested in this study were found to be positive for the coa gene by PCR, confirming the universal presence of the coagulase gene among the isolates. The PCR amplification revealed size polymorphism in the coa gene amplicons, ranging from 350 bp to 850 bp (Table 2, Figure 3). Based on these differences in amplicon size, five distinct genotypic patterns were identified among the isolates: 700 bp, 600 bp, 850 bp, 350 bp, and a combination of 600 bp and 850 bp (double bands) (Figure 4). The 700 bp amplicon was the most frequently observed pattern, present in 30 isolates (38.46%), followed by the 600 bp band in 26 isolates (33.33%), the 850 bp band in 16 isolates (20.51%), the 350 bp band in 3 isolates (3.85%), and double bands (600 bp and 850 bp) in 3 isolates (3.85%). Among the human-derived MRSA isolates, 700 bp and 850 bp genotypes were most commonly observed, each constituting 37.5% of the total. In animal-derived isolates, the 700 bp and 600 bp genotypes were predominant, appearing equally across various animal species including cattle, camel, goat, and horse. Notably, double-band profiles (600 bp and 850 bp) were observed exclusively in animal isolates, while absent in human samples. From mastitis milk samples, the 700 bp and 850 bp genotypes were the most prevalent, each accounting for 29.41% of the 17 isolates. In isolates from unprocessed meat samples (n = 20), the 700 bp genotype was dominant (45%), followed by the 600 bp genotype (40%) and the 350 bp band (10%).

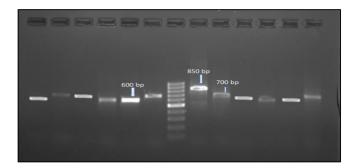


Fig 3: coa gene showing polymorphism with variable size amplicons

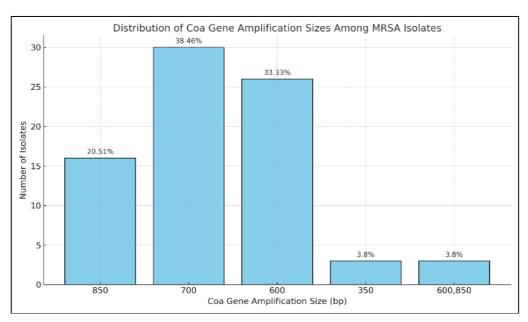


Fig 4: Distribution of coa gene among MRSA isolates irrespective of source.

Table 2: Distribution of *coa* gene among MRSA isolates from different sources

G M-	G1- 4	No. of	coa amplicon	No. of
S. No.	Sample type	samples	size	isolates (%)
1.	Pus of human	16	850	6 (37.50)
			700	6 (37.50)
			600	4 (25.00)
2.	Pus of animals	25	850	4 (16.00)
			700	10 (40.00)
			600	10 (40.00)
			600,850	1 (4.00)
	Dog	6	850	1 (16.67)
			700	4 (66.67)
			600	1 (16.67)
	Cattle	7	850	1 (14.29)
			700	2 (28.57)
			600	4 (57.14)
	Camel	6	850	1 (16.67)
			700	2 (33.33)
			600	3 (50.00)
			850	1 (16.67)
			700	2 (33.33)
			600	2 (33.33)
			600,850	1 (16.67)
3.	Mastitis milk	17	850	5 (29.41)
			700	5 (29.41)
			600	4 (23.53)
			350	1 (5.88)
			600,850	2 (11.76)
	Cattle	9	850	4 (44.44)
			700	2 (22.22)
			600	1 (11.11)
			350	1 (11.11)
			600,850	1 (11.11)
			850	1 (12.50)
	Buffalo	8	700	3 (37.50)
			600	3 (37.50)
			600,850	1 (12.50)
4.	Unprocessed Meat	20	850	1 (5.00)
			700	9 (45.00)
			600	8 (40.00)
			350	2 (10.00)
	Chicken	7	850	1 (14.29)
			700	3 (42.86)
			600	3 (42.86)
	Goat	13	700	6 (46.15)
			600	5 (38.46)
			350	2 (15.38)
			220	4 (13.30)

Discussion

Coagulase production, a key virulence attribute of Staphylococcus aureus, remains a widely used diagnostic criterion to differentiate S. aureus from coagulase-negative staphylococci (CoNS). In the present study, 10 out of 78 MRSA isolates exhibited coagulase positivity with plasma from all eight animal species and human sources, supporting the broad-spectrum coagulase activity of these isolates. However, the intensity and onset of clot formation varied considerably across different plasmas, echoing findings by Bhati et al. (2016) [6] and Sharma (2017) [29], who emphasized the differential coagulase response among plasma sources. Human plasma consistently demonstrated superior performance in detecting coagulase activity across most isolates, which is in agreement with findings of Yadav et al. (2015) [35] and Maddela et al. (2024) [20]. Consistent with this, Verma (2021) [33] found that 83.62% of MRSA isolates tested were positive in TCT. Nathiya et al. (2018)

[24] also observed coagulase positivity in the majority of isolates except one that failed to coagulate human plasma, indicating occasional false negatives in phenotypic assays. Interestingly, in the current study, a few isolates exhibited delayed coagulation-weak or no clot formation at 5 hours but positive reactions at 24 hours. Similar delayed reactions were documented by Boerlin et al. (2004) [7], who suggested prolonged incubation enhances sensitivity, especially in coagulase-producing strains. Such findings underscore the role of incubation time in improving the diagnostic yield of the TCT. Moreover, false-negative TCT results may arise from low-level or non-expression of coagulase under in vitro conditions (Varettas et al., 2005) [32], warranting molecular confirmation. Indeed, in the present study, three isolates negative by TCT were confirmed to carry the coa gene through PCR, highlighting the importance of integrating molecular diagnostics for definitive identification.

The phenomenon of coagulase-negative S. aureus has also been reported by Parth et al. (2016) [26], Bhagat et al. (2017) [3], Sharma *et al.* (2017) [29], and Yadav *et al.* (2018) [17], with varying frequencies, suggesting that phenotypic detection alone may not always reflect the genetic potential of isolates. Khichar and Kataria (2015) [18] found animal plasmas (particularly those from rabbit, buffalo, and cattle) to be more effective than human plasma in eliciting strong coagulation reactions. This discrepancy may stem from differences in strain-specific coagulase production, sample origin, or even handling and preparation of the plasma used. The coa gene, encoding coagulase, is a key virulence marker and an important molecular target for the identification and differentiation of Staphylococcus aureus strains. In the present study, all 78 MRSA isolates demonstrated amplification of the coa gene, indicating 100% recovery, which aligns with the findings of Sharma (2017) [29], who also reported complete detection of the coa gene in S. aureus isolates. This consistency underscores the reliability of the coa gene as a molecular marker for S. aureus, particularly in methicillin-resistant strains. However, contrasting observations have been made by various researchers who reported the existence of coadeficient strains in different proportions. Bhati et al. (2014) [5], Parth *et al.* (2016) [26], and Diwakar (2023) [12] reported variable frequencies of coa-negative isolates, which could be attributed to geographical variation, host species, or differences in sample types. Notably, Bhati (2019) [4] observed five distinct coa gene amplicons, suggesting genotypic diversity, which is in concordance with the current findings where multiple amplicon sizes were detected.

The predominant amplicon observed in the present study was 700 bp, a result that mirrors the findings of Sharma (2017) [29], who also recorded 700 bp as the most frequent band among isolates from various sources. In another related study, Hema *et al.* (2022) [14] identified six genotypic variants (Code I-VI) ranging from 300 bp to 800 bp among clinical isolates, with the 600 bp band being the most prevalent, supporting the existence of polymorphism within the *coa* gene.

Javid *et al.* (2018) ^[17], in contrast, reported that only 64.10% of their *S. aureus* isolates carried the *coa* gene and observed four distinct genotypes (514 bp, 595 bp, 757 bp, and 802 bp), indicating variability that differs from the current findings. Similarly, Sadiq *et al.* (2020) ^[28] found only 54%

positivity for the *coa* gene among MRSA isolates from meat shops in Pakistan, which is significantly lower than the present study, likely reflecting differences in strain ecology or regional practices. The observation of two distinct bands in some isolates aligns with findings from Dendani *et al.* (2016) ^[8], who speculated that dual bands might be due to the presence of mixed *S. aureus* strains or contamination during milking.

While the majority of current findings lie within a moderate amplicon size range, a wider diversity has been reported by other researchers, such as Dendani et al. (2016) [8] (300-980 bp) and Sharma et al. (2017) [29] (730-1130 bp). Deepak et al. (2024) showed 11 different types of amplicons, including 420 bp, 650 bp, 731 bp, 812 bp, 891 bp, 972 bp, 1070 bp, 1070 bp + 972 bp $650 \text{ bp} + 972 \text{ bp}, \qquad 731 \text{ bp} + 972 \text{ bp},$ 812 bp + 972 bp, and few unspecific bands. Conversely, certain studies have documented monomorphic coa gene profiles, such as Abdeen et al. (2015) [1] with 630 bp, suggesting strain-specific characteristics or limited genetic diversity within their isolates. Other researchers, including Nazir et al. (2017) [25] and Ibrahim et al. (2019) [16], observed dual amplicons (e.g., 910 and 730 bp; 680 and 790 bp), reinforcing the polymorphic nature of the *coa* gene. In the present study, three isolates were found to be negative in the tube coagulase test (TCT) at the 5-hour mark, yet were positive for the coa gene via PCR. This discrepancy highlights the limitation of relying solely on phenotypic assays for coagulase detection, which may be influenced by expression levels, testing conditions, or protein stability. Therefore, molecular confirmation using coa gene PCR is essential to accurately classify MRSA isolates and avoid false-negative results from phenotypic assays.

Conclusion

This study underscores the importance of integrating phenotypic and molecular approaches for accurate identification of *Staphylococcus aureus*. While the tube coagulase test remains a useful diagnostic tool, its variability across plasma sources and incubation periods may lead to misinterpretation. PCR-based detection of the *coa* gene offers greater reliability and specificity, highlighting its value in confirming coagulase production. The observed genetic diversity in *coa* gene profiles further emphasizes the need for molecular typing to understand strain variation. Overall, combining traditional and molecular diagnostics enhances the accuracy of MRSA detection and epidemiological insights.

References:

- 1. Abdeen EE, Mousa WS, Abdel-Tawab AA, El-Faramawy R, Abo-Shama UH. Phenotypic, genotypic and antibiogram among *Staphylococcus aureus* isolated from bovine subclinical mastitis. Pak. Vet. J. 2021;41(2):289-293.
- 2. Andrade-Figueiredo M, Luz ACDO, Mota Silveira Filho VD, Leal-Balbino TC. Comparison of genotyping methods and toxin gene profiles of *Staphylococcus aureus* isolates from clinical specimens. Genetics and Molecular Biology. 2023;46(4):e20220321.
- 3. Bhagat AG, Kher HN, Dadawala AI, Chauhan HC, Patel BK, Shrimali MD, Chandel BS. Identification and characterization of methicillin-resistant *Staphylococcus aureus* isolated from bovine mastitis. International

- Journal of Current Microbiology and Applied Sciences. 2017;6(2):223-230.
- 4. Bhati T, Kataria AK. Characterization of Staphylococcus aureus isolates from mastitic milk, udder surfaces and milkers' hands from arid and semi arid regions of India for capsular (cap5K and cap8K) and collagen adhesin (cna) genes. Indian Journal of Animal Sciences. 2019;89(11):1184-1187.
- 5. Bhati T, Nathawat P, Ahmad IM, Kumar SS, Yadav R, Kumar AK. PCR-RFLP of *Staphylococcus aureus* coagulase gene isolated from bovine subclinical mastitis. Journal of Pure and Applied Microbiology. 2014;8(6):4711-4714.
- 6. Bhati T, Nathawat P, Sharma SK, Rathore P, Kataria AK. Cultural, biochemical and haemolytic properties of *Staphylococcus aureus* isolated from cases of subclinical mastitis in cattle. Int. J. Dev. Res. 2016;6(7):8371-8375.
- 7. Boerlin P. Evolution of bacterial virulence. Pathogenesis of Bacterial Infections in Animals. 2004:13-22.
- 8. Chadi Dendani Z, Bezille P, Arcangioli MA. PCR and PCR-RFLP genotyping of *Staphylococcus aureus* coagulase gene: Convenience compared to pulse-field gel electrophoresis. Comparative Clinical Pathology. 2016;25(5):1061-1064.
- 9. Cowan ST, Steel KJ. Cowan and Steel's Manual for the Identification of Medical Bacteria. 2nd ed. J Clin Pathol. 1975 Jul;28(7):600. PMCID: PMC475784.
- Dallal MMS, Khoramizadeh MR, Amiri SA, Yaraghi AAS, Fard RMN. Coagulase gene polymorphism of Staphylococcus aureus isolates: A study on dairy food products and other foods in Tehran, Iran. Food Science and Human Wellness. 2016;5(4):186-190.
- 11. Deepak SJ, Kannan P, Savariraj WR, Alagesan SK, Ravindran NB, Amachawadi RG, *et al.* Characterization of *Staphylococcus aureus* isolated from milk samples for their virulence, biofilm, and antimicrobial resistance. Scientific Reports. 2024;14(1):25635.
- 12. Diwakar RM. Detection of multidrug resistance (MDR) *Staphylococcus aureus* from mastitis infected cows [Doctoral dissertation]. Maharashtra Animal and Fishery Sciences University; 2023.
- 13. Geetha SH, Kalghatgi AT, Rama NK. Characterization of methicillin resistant *Staphylococcus aureus* strains from clinical isolates in a tertiary care hospital of south India. Int J Med Res Rev. 2015;3(9):1077-1083.
- 14. Hema P, Appalaraju B, Someshwaran R. Molecular Typing of Methicillin Resistant *Staphylococcus aureus* using coa Gene PCR-RFLP: A Cross-sectional Study. Journal of Clinical & Diagnostic Research. 2022;16(11).
- 15. Hookey JV, Richardson JF, Cookson BD. Molecular typing of *Staphylococcus aureus* based on PCR restriction fragment length polymorphism and DNA sequence analysis of the coagulase gene. Journal of Clinical Microbiology. 1998;36(4):1083-1089.
- 16. Ibrahim ES, El-Baghdady K, Abd El-All SM, Warda MA, Prince AM, Ibrahim M. Prevalence of multidrug resistance in the Egyptian methicillin-resistant *Staphylococcus aureus* isolates. African Journal of Biological Sciences. 2020;16(1):43-52.

- 17. Javid F, Taku A, Bhat MA, Badroo GA, Mudasir M, Sofi TA. Molecular typing of *Staphylococcus aureus* based on coagulase gene. Vet World. 2018;11(4):423-430. doi: 10.14202/vetworld.2018.423-430.
- 18. Khichar V, Kataria AK. Characterization of *Staphylococcus aureus* of cattle clinical mastitis milk origin for coagulase and haemolysin properties. Int. J. Vet. Sci. Res. 2015;1(1):1-5.
- 19. Locatelli C, Gattolin S, Monistero V, Castiglioni B, Moroni P, Addis MF, Cremonesi P. *Staphylococcus aureus* coa gene sequence analysis can prevent misidentification of coagulase-negative strains and contribute to their control in dairy cow herds. Frontiers in Microbiology. 2023;14:1120305.
- Maddela P, Makwana PM, Parmar SM, Kalyani IH, Patel DR, Parasana DK. Cultural and Biochemical Characterization of *Staphylococcus aureus* Isolates from Bovine Clinical and Subclinical Mastitis. Indian Journal of Veterinary Sciences & Biotechnology. 2024;20(3).
- 21. Mahmoudi H, Arabestani MR, Mousavi SF, Alikhani MY. Molecular analysis of the coagulase gene in clinical and nasal carrier isolates of methicillin-resistant *Staphylococcus aureus* by restriction fragment length polymorphism. Journal of Global Antimicrobial Resistance. 2017;8:41-45.
- 22. Mehrotra M, Wang G, Johnson WM. Multiplex PCR for detection of genes for *Staphylococcus aureus* enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. Journal of Clinical Microbiology. 2000;38(3):1032-1035.
- 23. Moustafa AED, Hammad A, Dawoud M. Differences between phenotypic and genotype characterization of *S. aureus* isolated from bovine mastitis in Egypt. Assiut Veterinary Medical Journal. 2021;67(169):182-201.
- Nathiya P, Gaurav K, Diwakar SK, Kataria AK. Detection of phenotypic variations and biotypes of Staphylococcus aureus obtained from cattle mastitic milk. Int. J. Curr. Microbiol. Appl. Sci. 2018;7(9):2450-2456.
- 25. Nazir A, Malik K, Qamar H, Basit MH, Liaqat A, Shahid M, *et al.* A review: Use of plant extracts and their phytochemical constituents to control antibiotic resistance in *S. aureus*. Pure and Applied Biology (PAB). 2020;9(1):720-727.
- 26. Parth FM, Chauhan HC, Bhagat AG, Chandel BS, Dadawala AI, Kher HN. Detection of virulence associated factors from *Staphylococcus aureus* isolated from bovine mastitis. Buffalo Bulletin. 2016;35(4):687-696
- 27. Quinn PC. The categorization of above and below spatial relations by young infants. Child Development. 1994;65(1):58-69.
- Sadiq A, Samad M, Saddam, Basharat N, Ali S, Roohullah, Khan J. Methicillin-resistant Staphylococcus aureus (MRSA) in slaughter houses and meat shops in capital territory of Pakistan during 2018-2019. Frontiers in Microbiology. 2020;11:577707.
- 29. Sharma V, Sharma S, Dahiya DK, Khan A, Mathur M, Sharma A. Coagulase gene polymorphism, enterotoxigenecity, biofilm production, and antibiotic resistance in *Staphylococcus aureus* isolated from bovine raw milk in North West India. Annals of

- Clinical Microbiology and Antimicrobials. 2017;16(1):65.
- 30. Straub JA, Hertel C, Hammes WP. A 23S rDNA-targeted polymerase chain reaction-based system for detection of *Staphylococcus aureus* in meat starter cultures and dairy products. Journal of Food Protection. 1999;62(10):1150-1156.
- 31. Turner NA, Sharma-Kuinkel BK, Maskarinec SA, Eichenberger EM, Shah PP, Carugati M, Fowler VG Jr. Methicillin-resistant *Staphylococcus aureus*: an overview of basic and clinical research. Nature Reviews Microbiology. 2019;17(4):203-218.
- 32. Varettas K, Mukerjee C, Taylor PC. Anticoagulant carryover may influence clot formation in direct tube coagulase tests from blood cultures. Journal of Clinical Microbiology. 2005;43(9):4613-4615.
- 33. Verma DRK. Molecular Characterization and Antimicrobial Sensitivity Pattern of Methicillin Resistant *Staphylococcus aureus* among Farm Animals [Doctoral dissertation]. ANDUAT, Kumarganj, Ayodhya; 2021.
- 34. Yadav R, Kumar A, Singh VK, Yadav SK. Prevalence and antibiotyping of *Staphylococcus aureus* and methicillin-resistant *S. aureus* (MRSA) in domestic animals in India. Journal of Global Antimicrobial Resistance. 2018;15:222-225.
- 35. Yadav R, Sharma SK, Yadav J, Nathawat P, Kataria AK. Typing of *Staphylococcus aureus* obtained from mastitic milk of cattle and buffalo on the basis of coagulase (coa) gene RFLP patterns. Israel Journal of Veterinary Medicine. 2015;70(4):37-41.
- 36. Zamani S, Dadashi M, Bahonar S, Haghighi M, Kakavandi S, Hashemi A, Goudarzi M, *et al.* Emerging Challenges in *Staphylococcus aureus* Bloodstream Infections: Insights from Coagulase Typing, Toxin Genes, and Antibiotic Resistance Patterns. Advances in Medicine. 2023;2023(1):7041159.