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Abstract 

Soil organic carbon (SOC) is a critical component of soil health, influencing productivity, ecosystem 

services, and carbon sequestration. This study applied Quantile Random Forest (QRF) modeling to 

predict SOC distribution across depth intervals (0-200 cm) using 88 soil profiles from India’s Black 

Soil Region (BSR). Observed, splined, and predicted SOC values were compared to evaluate prediction 

accuracy and spatial variability. Results indicate low SOC levels (mean = 0.5%) consistent with semi-

arid agroecosystems, with highest concentrations in surface soils (0-15 cm) and a decline with depth. 

Prediction performance improved with depth (R² = 0.48 at 0-5 cm; 0.62 at 100-200 cm), reflecting 

greater stability of SOC in subsoils. Vegetation, slope, rainfall, and temperature emerged as key 

predictors of SOC distribution. Spatial mapping highlighted higher SOC in forested and hilly zones, 

and lower SOC in cultivated and degraded lands. Uncertainty analysis revealed greater variability in 

surface layers than subsoils. These findings provide insights into SOC dynamics in black soils and 

demonstrate the utility of machine learning for depth-resolved SOC prediction, supporting sustainable 

land management and carbon conservation. 

 
Keywords: Digital soil mapping, prediction intervals, machine learning, Scorpan, Deccan trap, spatial 

variability, land use planning 

 

Introduction 

Soil organic carbon (SOC) is a fundamental attribute of soils, regulating fertility, 

productivity, and ecosystem services. It enhances soil structure, water-holding capacity, 

nutrient cycling, and cation exchange, thereby sustaining agricultural production (Lal, 2004) 
[11]. Beyond agronomic benefits, SOC is the largest terrestrial carbon pool, storing more 

carbon than the atmosphere and vegetation combined, and thus plays a central role in 

climate-change mitigation through carbon sequestration (Batjes, 1996) [1]. Consequently, 

understanding and accurately predicting SOC stocks and distributions is critical for food 

security, soil health, and climate resilience. 

Globally, SOC distribution is highly uneven both horizontally and vertically. Surface 

horizons contain the majority of labile SOC due to organic matter inputs from roots and crop 

residues, while subsoils store more stable yet often smaller fractions of SOC (Jobbágy & 

Jackson, 2000; Rumpel & Kögel-Knabner, 2011) [8, 23]. Climate, vegetation, parent material, 

and land use interact to regulate SOC accumulation and decomposition, leading to 

pronounced variability across landscapes (Wiesmeier et al., 2019) [30]. In India, SOC stocks 

are generally low compared to global averages, largely due to semi-arid climates, intensive 

cultivation, residue removal, and limited organic matter inputs (Bhattacharyya et al., 2000) 
[24]. These conditions make regional SOC prediction especially challenging. 

Digital soil mapping (DSM) has emerged as a promising framework for SOC prediction by 

integrating soil profile data with environmental covariates derived from terrain analysis, 

climate models, and remote sensing. Machine learning (ML) algorithms such as Random 

Forest (RF), Cubist, and Support Vector Machines (SVM) have been widely adopted in DSM 

due to their ability to capture complex non-linear interactions between SOC and 

environmental drivers (Hengl et al., 2017) [7]. However, a key limitation of many ML models 

is their inability to adequately quantify uncertainty, which is critical for risk-aware decision-

making in soil management (Ma et al., 2014) [16]. 
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This challenge is particularly pronounced in India’s Black 

Soil Region (BSR), dominated by Vertisols and associated 

soils. The BSR is a major agricultural zone that supports 

staple crops such as cotton, soybean, and sorghum, yet it is 

characterized by semi-arid climates, intensive land use, and 

inherently low SOC stocks (Bhattacharyya et al., 2007) [2]. 

High spatial heterogeneity in land use, soil depth, and 

management further complicates SOC prediction. Moreover, 

field-based SOC datasets are sparse and unevenly 

distributed, limiting the applicability of conventional 

statistical models and highlighting the need for robust ML 

methods that can handle data scarcity while quantifying 

prediction uncertainty. 

To address this, Quantile Regression Forest (QRF) offers a 

suitable approach. QRF is an extension of RF that predicts 

conditional quantiles, providing not only central predictions 

but also prediction intervals without distributional 

assumptions (Meinshausen, 2006) [18]. By retaining the full 

distribution of response values within decision trees, QRF 

captures both mean trends and variability, thereby enabling 

uncertainty quantification. This makes it especially valuable 

for SOC prediction in regions like the BSR, where sample 

density is low and environmental heterogeneity is high. 

Therefore, the objectives of this study are to: (i) Harmonize 

profile SOC data across standard depth intervals (0-200 cm) 

using mass-preserving splines; (ii) Develop and validate 

QRF models for predicting SOC distributions using 

environmental covariates; (iii) Compare observed, splined, 

and predicted SOC values to evaluate model accuracy; and 

(iv) Quantify prediction uncertainty and generate depth-

resolved SOC maps to support sustainable land management 

and carbon accounting in India’s Black Soil Region 

 

2. Materials and Methods 

2.1. Study area 

The study was conducted in the BSR of Amravati district of 

Maharashtra, India, covering approximately 59,758 ha (Fig. 

1) and lies between 20○24’ to 21○33’N and 77○06’ to 

78○18’E. The region is part of the Deccan Plateau, 

characterized by flat-topped hills (plateaus) and intervening 

valleys. The climate is semi-arid tropical with a mean 

annual rainfall of 975 mm and a mean annual temperature of 

28 °C. The geology is predominantly Deccan Trap basalt, 

with alluvial deposits in the valley of the Purna River. 

Rainfed agriculture is the dominant land use. The soils have 

an ustic moisture regime and an isohyperthermic 

temperature regime. 

 

 
 

Fig 1: Location of study area 

 

2.2 Soil data 

A total of 88 geo-referenced soil profiles, with depths 

ranging from 14 to 155 cm, were used in this study. Profiles 

were sampled following standard protocols, and laboratory 

analyses were performed to determine SOC concentration 

using wet oxidation (rapid titration) method. Ground soil 

sample passed through a 0.5 mm sieve were used for 

estimating organic carbon. Soil samples were oxidised by 

potassium dichromate (1 N) and the conc. H2SO4 was used 

to generate the heat of dilution. The amount of dichromate 

unutilized was determined by back titration with standard 

ferrous ammonium sulphate solution (0.5 N). To ensure 

comparability across profiles with unequal depth intervals, 

SOC data were harmonized to standardized depth intervals 

(0-5, 5-15, 15-30, 30-60, 60-100, and 100-200 cm) using the 

mass-preserving spline approach. This procedure allowed 

the integration of profile data into a continuous depth 

function while conserving SOC mass. 

 

2.3 Environmental covariates 

Based on the SCORPAN framework, 47 covariates 

representing Soil, Climate, Organisms, Relief, Parent 

material, Age, and Space were compiled (Table 1). Terrain 

attributes (30 m resolution) were derived from the SRTM 
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DEM using SAGA GIS. Climate variables (Mean Annual 

Precipitation and Temperature) were sourced from 

WorldClim (1km resolution). Time-series Landsat 5 TM 

imagery was used to compute spectral indices (NDVI, EVI, 

SAVI, FV) for three seasons (kharif, rabi, zaid). Annual 

average Land Surface Temperature (LST) was derived from 

MODIS data (1km). All covariates were resampled to a 30m 

grid using bilinear interpolation. 
 

Table 1: Environmental covariates used for digital soil mapping of SOC  
 

S. N Group Covariate Abbr. Res. 

1 Climate Mean annual precipitation (mm) MAP 1 km 

2 Terrain 

Elevation (m) Elv 30 m 

Slope (%) Slope 30 m 

Relative Slope Position RSP 30 m 

Channel Network Base Level CNBL 30 m 

Channel Network Distance CND 30 m 

Multi-Resolution Ridge Top Flatness Index MRRTF 30 m 

Multi-Resolution Valley Bottom Flatness Index MRVBF 30 m 

Valley Depth VD 30 m 

Topographic Wetness Index TWI 30 m 

LS-Factor LSf 30 m 

3 
Vegetation 

(Kharif (k), Rabi (r), Zaid (z)) 

Land surface thermal conditions LST 30 m 

Normalized Difference Vegetation Index. NDVI 10 m 

Near infrared NIR 10 m 

Enhanced Vegetation Index EVI 10 m 

Fractional vegetation FV 10 m 

 

2.4 Modelling framework 

To avoid overfitting and reduce multicollinearity, recursive 

feature elimination (RFE) was performed using the RFE 

function in the caret R package. Variables were ranked by 

their importance (%IncMSE) from a preliminary RFE 

model, and the optimal subset that maximized model 

performance was selected. 

The QRF model was implemented using the ranger package 

in R. The model was tuned via out-of-bag (OOB) error 

estimation; the optimal parameters were mtry = 5, num.trees 

= 1000, and min.node.size = 5. Unlike standard RF, which 

estimates the conditional mean, QRF retains the entire 

distribution of values in the leaf nodes of each tree, allowing 

for the computation of any quantile of the conditional 

distribution. This study generated the 0.05, 0.5 (median), 

and 0.95 quantiles to represent the lower bound, median 

prediction, and upper bound of the 90% prediction interval, 

respectively. 

 

2.5 Model validation 

Model performance was evaluated using a repeated (20 

times) 10-fold cross-validation. Performance metrics 

included coefficient of determination (R²), root mean square 

error (RMSE), mean error (ME), and Lin's concordance 

correlation coefficient (CCC). Good models have a root 

mean square error that is close to 0, R2 and CCC that is 

equal to or close to 1. 

 

Coefficeint of determination (R2) = 1-
∑ (pi−oi)2𝑛

𝑖=1

∑ (pi̅̅̅−oi̅)2𝑛
𝑖=1

   (i) 

 

Mean error (ME) = 
1

𝑛
∑ (pi − oi)𝑛

𝑖=1       (ii) 

 

Root mean squared error (RMSE) =√
1

𝑛
∑ (pi − oi)2𝑛

𝑖=1   (iii) 

 

where, pi and oi are predicted and observed values, pi̅ and oi̅ 
are means of these values. 

 

Lin's concordance correlation coefficient (CCC) 

=
2𝜌𝜎0𝜎𝑝

𝜎0
2 + 𝜎𝑝

2 + (µ0−µp)2          (iv) 

 

In this formula, ρ is the Pearson correlation coefficient 

between the observed and predicted values, µ0 and µp are 

the means of the observed and predicted values, and 𝜎0
2 and 

𝜎𝑝
2 are the corresponding variances. 

 

2.6 Uncertainty quantification 

A key advantage of QRF is its capacity to estimate 

prediction intervals. For each grid cell, the 5th and 95th 

quantiles of the SOC distribution were extracted, and the 

prediction interval width (PIW) was computed as the 

difference between them. PIW maps were generated to 

spatially represent prediction uncertainty across the study 

area. Narrow PIWs indicate greater model confidence, 

whereas wider PIWs highlight regions where SOC 

predictions are less reliable and where additional sampling 

may be required. 

 

3. Results and Discussions 

3.1 Observed SOC 

Observed SOC values (14-155 cm) indicate a wide range 

(0.1-2.2%), with a mean of 0.5% and a SD of 0.3 (Table 2). 

The CV = 0.6 suggests moderate variability in SOC content 

within the observed data. The sample size (N) for this 

analysis is 88, to train the model for soil SOC and which 

provides a reasonable basis for statistical interpretation. The 

observed mean SOC value of 0.5% in this study is relatively 

low compared to global averages, which often range 

between 1.5% and 3.5% in temperate and tropical regions 

(Lal, 2004) [11]. However, the low SOC content observed 

here is consistent with findings in arid and semi-arid 

regions, where limited vegetation covers and high 

temperatures accelerate organic matter decomposition 

(Batjes, 1996) [1]. The studies in similar climatic zones, such 

as those in sub-Saharan Africa and parts of Australia, have 

reported SOC values ranging from 0.2% to 1.5%.  

In India, SOC levels vary significantly across regions due to 

differences in climate, land use, and soil management 
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practices. The observed SOC range (0.1% to 2.2%) in this 

study aligns with findings from other parts of India, 

particularly in regions with similar agro-climatic conditions. 

The studies in the Deccan Plateau and semi-arid regions of 

Maharashtra have reported SOC values ranging from 0.3% 

to 2.5% (Bhattacharyya et al., 2007) [2]. The low mean SOC 

value (0.5%) in this study may reflect the impact of 

intensive agriculture, limited organic matter inputs, and high 

rates of soil erosion, which are common challenges in Indian 

soils. Studies in Maharashtra have reported SOC values 

ranging from 0.4% to 2.8% in the topsoil, with lower values 

in rainfed and degraded lands.  

 

3.2 Soil SOC after splining 

The depth-wise distribution of SOC, harmonized using 

mass-preserving splines, revealed a clear decline with 

increasing soil depth. The surface layer (0-15 cm) recorded 

the highest mean SOC concentration of 0.7%, while values 

steadily decreased with depth, reaching 0.4% in the 100-200 

cm interval. This vertical gradient is consistent with the 

widely documented global pattern, where SOC stocks are 

concentrated in surface horizons due to greater organic 

matter inputs from litter deposition and root turnover 

(Jobbágy & Jackson, 2000; Wiesmeier et al., 2019) [8, 30]. 

Although SOC content diminishes with depth, the subsoil 

still represents an important reservoir for long-term carbon 

storage because of its slower turnover rates and relative 

protection from microbial decomposition (Rumpel & Kögel-

Knabner, 2011; Luo et al., 2019) [23, 15]. These results 

emphasize that while management interventions often focus 

on topsoil carbon, deeper soil layers must also be considered 

in carbon accounting and climate mitigation strategies. 

 
Table 2: Descriptive statistics of observed, splined and predicted soil SOC 

 

Depth (cm) Min Max Mean SD CV% N 

Observed SOC 

14-155 0.1 2.2 0.5 0.3 0.6 88 

SOC after splining 

0-5 0.17 1.9 0.7 0.3 0.4 84 

5-15 0.16 1.8 0.7 0.3 0.4 84 

15-30 0.13 1.5 0.6 0.2 0.3 79 

30-60 0.01 1.5 0.5 0.2 0.4 70 

60-100 0.03 1.8 0.5 0.3 0.6 66 

100-200 0.03 1.7 0.4 0.3 0.8 57 

Predicted SOC 

0-5 0.17 1.91 0.71 0.29 0.4 84 

5-15 0.48 0.87 0.68 0.09 0.1 83 

15-30 0.45 0.83 0.66 0.09 0.1 83 

30-60 0.39 0.95 0.59 0.11 0.2 80 

60-100 0.27 0.63 0.49 0.10 0.2 70 

100-200 0.14 0.59 0.37 0.12 0.3 57 

 

3.3 Variables of importance  

The Quantile Regression Forest (QRF) model identified 

distinct sets of controlling factors for SOC distribution 

across soil depths. In the surface layers, vegetation density 

(VD), slope, and remote sensing-derived indices emerged as 

the most influential predictors, reflecting the strong 

influence of biomass inputs, land cover, and topographic 

control on organic matter accumulation. At subsurface 

depths, climatic variables such as mean annual precipitation 

(MAP) and land surface temperature (LST) became more 

critical, highlighting the role of soil-climate interactions in 

regulating carbon stabilization below the plough layer. In 

the deeper horizons (100-200 cm), terrain attributes, 

particularly multi-resolution valley bottom flatness 

(MRVBF) and multi-resolution ridge top flatness (MRRTF), 

gained importance, indicating the influence of long-term 

geomorphic processes on SOC distribution. These findings 

are consistent with digital soil mapping (DSM) studies in 

India and globally, which emphasize the depth-dependent 

influence of biotic, climatic, and terrain factors on SOC 

variability (Hengl et al., 2017; Wadoux et al., 2020) [7, 29]. 
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Fig 2: Important variable for predicting soil SOC 

 

3.4 Predicted SOC and spatial distribution 

The QRF-based predictions of SOC ranged from 0.04 to 

1.2% across the study area (Fig. 3). Similar to the observed 

and splined data, a distinct depth-dependent decline was 

evident, with the highest concentrations in the surface 

horizons and progressively lower values with depth. 

However, the predicted SOC variability was generally lower 

than the observed values, particularly in the topsoil, 

reflecting the model’s tendency to smooth local 

heterogeneity. Spatial maps revealed clear geographic 

patterns, with higher SOC levels concentrated in forested 

and hilly areas, where organic inputs are greater and erosion 

is less severe, while lower values were associated with 

intensively cultivated or degraded zones. These spatial 

patterns are consistent with regional studies in India (Patil et 

al., 2020) [21] and global assessments of SOC distribution 

(Lugato et al., 2014) [14], which similarly highlight the 

strong influence of land use, topography, and management 

intensity on SOC variability. 

 

 
 

Fig 3: Depth-wise predicted map for the soil SOC 
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The spatial distribution of weighted mean of SOC in the 

study area is illustrated in Fig. 4, SOC levels range from 

0.2% to 0.7%. The spatial variability suggests that higher 

SOC is found in hilly or forested regions, while lower SOC 

is prevalent in agricultural or degraded lands. SOC 

distribution varies significantly across different landscapes 

due to factors such as climate, vegetation, topography, and 

land use. High SOC areas, primarily in the western parts of 

the region, are associated with Purna valley deposition. 

These areas benefit from higher rainfall, minimal soil 

disturbance, and organic matter accumulation, similar to 

findings in the Western Ghats, Himalayan forests, and 

central India's dense forest regions. Moderate SOC areas are 

found in transitional zones between forests and agricultural 

lands, often characterized by agroforestry, mixed cropping, 

or semi-intensive cultivation that maintains SOC at 

intermediate levels. 

This pattern is also observed in Madhya Pradesh, 

Chhattisgarh, and Odisha, where forest-agriculture 

boundaries significantly influence SOC levels. Low SOC 

areas, mostly in the southern and eastern parts of the region, 

are likely associated with intensively cultivated, semi-arid, 

or degraded lands. In these areas, high oxidation rates, 

deforestation, overgrazing, and soil erosion contribute to 

SOC depletion, a trend also reported in Maharashtra’s 

Vidarbha and Marathwada regions, Rajasthan’s drylands, 

and Gujarat’s arid zones (Patil et al., 2020b) [21]. 

 

 
 

Fig 4: Predicted map for the weighted mean of SOC 

 

3.5 Prediction Accuracy (QRF Model) 

The predictive performance of the QRF model varied with 

soil depth, showing an overall improvement in accuracy for 

deeper layers (Table 3). In the shallow surface soils (0-5 

cm), the model achieved an R² of 0.48, reflecting the 

challenges of capturing the high spatial variability of topsoil 

SOC, which is strongly influenced by land management, 

residue inputs, and localized erosion-deposition processes. 

In contrast, prediction accuracy improved progressively 

with depth, reaching an R² of 0.62 in the 100-200 cm 

interval. This enhanced performance at greater depths can 

be attributed to the relatively stable nature of subsoil carbon 

stocks, which are less affected by short-term anthropogenic 

disturbances and better explained by long-term soil-forming 

factors. Such depth-dependent trends in predictive 

performance are consistent with global DSM studies, which 

have also reported stronger model fits for subsoil SOC 

compared to surface layers (Zhao et al., 2021; Kang et al., 

2022) [34, 9]. 

Table 3: Results of QRF model validation for SOC 
 

Depth (cm) RMSE R2 CCC 

0-5 0.19 0.48 0.54 

5-15 0.16 0.53 0.60 

15-30 0.14 0.58 0.67 

30-60 0.11 0.61 0.70 

60-100 0.12 0.57 0.67 

100-200 0.12 0.2 0.72 

 

 
 

Fig 5: Depth-wise predictive uncertainty map for soil SOC 

 

3.6 Uncertainty Analysis 

The uncertainty analysis revealed a clear depth-dependent 

pattern, with higher uncertainty in the shallow layers (0-15 

cm) and progressively lower uncertainty in the subsoil 

horizons (Fig 5). This trend reflects the inherently greater 

variability of surface SOC, which is strongly influenced by 

land management, residue turnover, and localized erosion-

deposition processes, compared to the more stable carbon 

pools at depth. The QRF model effectively quantified 

prediction intervals, offering a robust representation of 

uncertainty without assuming a predefined error 

distribution. These findings are consistent with global SOC 

mapping initiatives such as SoilGrids (Hengl et al., 2017) [7], 

where surface predictions are typically associated with 

wider confidence intervals. In the Indian black soil regions, 

the challenge of capturing surface variability is particularly 

pronounced due to intensive cultivation and semi-arid 

climatic conditions, while deeper soils display more 

predictable carbon stocks. This highlights the importance of 

explicitly accounting for uncertainty in SOC predictions to 

support risk-aware land management and climate mitigation 

strategies. 

 

4. Conclusion 

This study provides a robust framework for predicting soil 

organic carbon (SOC) in India’s Black Soil Region (BSR) 

using digital soil mapping and machine learning. The QRF 

model effectively captured depth-dependent SOC dynamics, 

delivering higher accuracy in subsoils and quantifiable 

uncertainty across the profile. Results confirm that 

vegetation and land use drive surface SOC variability, while 

climate and terrain govern deeper pools. The final SOC 

maps highlight the impact of cultivation and degradation on 

carbon depletion and identify forested and hilly zones as 
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regional carbon hotspots. These outputs serve as decision-

support tools for sustainable soil management and climate 

change mitigation in semi-arid black soils. Future research 

should integrate denser sampling and proximal sensing data 

to refine topsoil predictions and extend the framework 

across India’s broader black soil belt. 

 

5. Acknowledgment  

I am deeply grateful to the faculty of the Soil Science 

Division, IGKV, Raipur, for their invaluable academic 

guidance. My sincere thanks to the faculty of the SRS 

Division and Director of ICAR-NBSS & LUP, for their 

expert mentorship and for providing an exceptional research 

environment. 

 

References  

1. Batjes NH. Harmonized soil property values for broad-

scale modelling (WISE30sec) with estimates of global 

soil carbon stocks. Geoderma. 2016;269:61-68. 

2. Bhattacharyya T, Pal DK, Mandal C, Velayutham M, 

Chandran P. Organic carbon stock of Indian soils and 

their geographical distribution. Current Science. 

2007;91(5):611-616. 

3. Catani F, Segoni S, Falorni G. An empirical 

geomorphology-based approach to the spatial prediction 

of soil thickness at catchment scale. Water Resour Res. 

2010;46(5):W05514. 

4. Cheng Q, Li H, Wang J, Zhu AX. Soil property 

mapping using machine learning methods: A case study 

of regional soil organic matter content in China. 

Geoderma. 2019;333:100-109. 

5. Gu H, Zhu AX, Liu J, Qin CZ, Zhou C. Soil thickness 

mapping using environmental correlation and 

geostatistical techniques in hilly areas of China. Soil Sci 

Soc Am J. 2018;82(3):609-620. 

6. Guo L, Gong P, Amundson R, Yu Q. Quantifying the 

impact of soil data quality on digital soil mapping. 

Geoderma. 2019;337:93-103. 

7. Hengl T, de Jesus JM, Heuvelink GBM, Gonzalez MR, 

Kilibarda M, Blagotić A, et al. SoilGrids250m: Global 

gridded soil information based on machine learning. 

PLoS One. 2017;12(2):e0169748. 

8. Jobbágy EG, Jackson RB. The vertical distribution of 

soil organic carbon and its relation to climate and 

vegetation. Ecol Appl. 2000;10(2):423-436. 

9. Kang J, Zhang G, Liu F, Yang R. Depth-dependent 

prediction of soil organic carbon using machine 

learning: Implications for soil carbon modeling. 

Geoderma. 2022;405:115424. 

10. Lagacherie P, Arrouays D, Bourennane H, Gomez C, 

Boulonne L. Digital soil mapping: Towards worldwide 

soil information. In: Sparks DL, editor. Advances in 

Agronomy. Vol. 157. Cambridge (MA): Academic 

Press; 2019. p.1-52. 

11. Lal R. Soil carbon sequestration impacts on global 

climate change and food security. Science. 

2004;304(5677):1623-1627. 

12. Liu F, Zhang GL, Song XD, Li DC, Zhao YG. 

Pedogenesis-related soil thickness mapping of hilly 

areas in subtropical China. Soil Tillage Res. 

2013;133:40-47. 

13. Liu F, Xu X, Li D, Pan X, Zhang G. Mapping soil 

thickness using environmental variables and random 

forest. Geoderma. 2019;354:113859. 

14. Lugato E, Panagos P, Bampa F, Jones A, Montanarella 

L. A new baseline of organic carbon stock in European 

agricultural soils using a modelling approach. Glob 

Change Biol. 2014;20(1):313-326. 

15. Luo Z, Wang E, Sun OJ. Soil carbon dynamics and 

climate change: Current understanding and future 

challenges. Earth Sci Rev. 2019;196:102873. 

16. Ma Y, Minasny B, McBratney AB. Uncertainty 

analysis for soil property mapping using random forest 

with quantile regression. Geoderma. 2014;232-234:243-

252. 

17. Mandal C, Bhattacharyya T, Sarkar D. Soil organic 

carbon stock in India and its significance. In: Sarkar D, 

Minhas PS, Singh R, editors. Soil Organic Carbon: A 

Sustainability Indicator for Soil Productivity and 

Health. Singapore: Springer; 2020. p.251-276. 

18. Meinshausen N. Quantile regression forests. J Mach 

Learn Res. 2006;7:983-999. 

19. Meyer WB, Turner BL, Skole D. Human drivers of 

global land-use change: Potentials of integrated 

assessment. In: Proceedings of the International 

Geosphere-Biosphere Programme. 2007. p.395-411. 

20. Mulder VL, Lacoste M, Richer-de-Forges AC, 

Arrouays D. GlobalSoilMap France: High-resolution 

spatial modelling the soils of France up to two meters 

depth. Sci Total Environ. 2016;573:1352-1369. 

21. Patil S, Kumar S, Singh SK, Chandran P. Spatial 

distribution of soil organic carbon in relation to land use 

and management practices in Central India. Catena. 

2020;189:104467. 

22. Pelletier JD, Rasmussen C. Geomorphically based 

predictive mapping of soil thickness in upland 

watersheds. Water Resour Res. 2009;45(9):W09417. 

23. Rumpel C, Kögel-Knabner I. Deep soil organic matter-

A key but poorly understood component of terrestrial C 

cycle. Plant Soil. 2011;338(1-2):143-158. 

24. Singh SK, Sarkar D, Bhattacharyya T. Digital soil 

mapping in India: Status and prospects. Current 

Science. 2020;118(12):1866-1876. 

25. Sreenivas K, Das BS, Mohanty BP, Wani SP. Spatial 

variability of soil organic carbon stocks in a semi-arid 

tropical watershed. Land Degrad Dev. 

2016;27(7):1718-1728. 

26. Tesfa TK, Tarboton DG, Chandler DG, McNamara JP. 

Modeling soil depth from topographic and land cover 

attributes. Water Resour Res. 2009;45(10):W10438. 

27. Vågen T-G, Lal R, Singh BR. Soil carbon sequestration 

in sub-Saharan Africa: A review. Land Degrad Dev. 

2016;27(3):574-589. 

28. Vanwalleghem T, Stockmann U, Minasny B, 

McBratney AB. A quantitative model for integrating 

landscape evolution and soil formation. J Geophys Res 

Earth Surf. 2010;115(F4):F04019. 

29. Wadoux AMJC, Minasny B, McBratney AB, Malone 

BP. Machine learning for digital soil mapping: 

Applications, challenges, and future directions. Comput 

Electron Agric. 2020;173:105379. 

30. Wiesmeier M, Urbanski L, Hobley E, Lang B, von 

Lützow M, Marin-Spiotta E, et al. Soil organic carbon 

storage as a key function of soils-A review of drivers 

and indicators at various scales. Geoderma. 

2019;333:149-162. 

https://www.biochemjournal.com/


 

~ 42 ~ 

International Journal of Advanced Biochemistry Research  https://www.biochemjournal.com    
 

31. Yan X, Cai C, Fang H. Spatial prediction of soil depth 

using ordinary kriging and auxiliary variables in 

subtropical China. Geoderma. 2021;383:114745. 

32. Yang R, Zhang G, Liu F. Depth functions and 

pedogenetic modeling of soil thickness. Soil Sci Soc 

Am J. 2020;84(3):806-817. 

33. Zhang G, Yang R, Liu F. Predictive mapping of soil 

depth using random forest and Cubist in complex 

terrain. Catena. 2021;200:105125. 

34. Zhao Y, Zhu AX, Qin CZ, Li B. Prediction of soil 

organic carbon at multiple depths: Comparison of 

machine learning models and geostatistical approaches. 

Geoderma. 2021;385:114874. 

 

https://www.biochemjournal.com/

